跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂臨佑
研究生(外文):Lu, Lin Yu
論文名稱:獨立微電網中分散式發電源輸出分配之智慧型垂降控制
論文名稱(外文):INTELLIGENT DROOP CONTROL FOR POWER SHARING OF DISTRIBUTED ENERGY RESOURCES IN ISOLATED AC MICROGRIDS
指導教授:朱家齊朱家齊引用關係
指導教授(外文):Chu, Chia Chi
口試委員:劉志文林法正鄭博泰吳財福
口試委員(外文):Liu, Chih WenLin, Faa JengCheng, Po TaiWu, Tsai Fu
口試日期:2017-01-17
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:145
中文關鍵詞:分散式控制二次控制共識解演算法垂降控制微電網分散式電源介面電力轉換器能量函數虛擬同步發電機交替運算乘子法頻率穩定度電壓穩定度網路安全惡意攻擊
外文關鍵詞:Distributed ControlSecondary ControlConsensus AlgorithmDroop ControlMicrogird (MG)Distributed Energy Resource (DER)DER Interface Converter (DIC)Energy FunctionVirtual Synchronous Generator (VSG)Alternating Direction Multipliers Method (ADMM)Frequency StabilityVoltage StabilityCyber-SecurityMalicious AttackPartial Primal-Dual (PPD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:2
近年由於分散式發電源於電網中佔比持續提升,調度各分散發電源同時維持電網電壓及頻率穩定度成為具挑戰性之課題。傳統分散式電力轉換器間之輸出協調,係透過屬於一次控制之自主垂降控制達成,此控制法之準確度受制於電網結構及傳輸線特性。於電網控制系統上建構通訊網路,於二次控制階層指揮調度發電源之實虛功輸出,將可有效解決此難題。然而,傳統之集中式二次控制需針對所有發電裝置建構高成本之集中通訊網路,且將因此不易拓展結構,與講求發電裝置可隨插即用之智慧微電網概念背道而馳。因此,本論文之目標為基於多重代理人控制理論中之共識控制法,設計新的分散式二次控制架構,以此達成分散式發電源之輸出功率
調度並強化微電網之頻率及電壓穩定度。
首先,為改善現有電力轉換器垂降控制之不足,提出一僅需稀疏通訊網路輔助之基於共識解垂降控制。有別於傳統垂降控制,所提控制法在電力網路傳輸線高度有損甚至接近純電阻情況下,依然可準確分配各發電源之實功及虛功輸出。此外,在此控制下之整體閉迴路系統穩定度,可透過非線性能量函數穩定度理論確保,故可知系統在大規模擾動下依然可維持穩定運轉。此研究亦在實時模擬環境下建置兩組微電網系統,藉此驗證所提控制於實際電網中運用之可行性。
其後,由於透過電力轉換器介面輸出之分散式發電源,不若傳統發電機組具有旋轉機械結構,在電網遭遇頻率擾動事故時,缺乏轉動慣量作為阻尼之電力轉換器將不易維持系統頻率穩定。而將同步發電機機械參數設計於電力轉換器控制架構中之虛擬同步機控制技術,將可有效解決
此問題。基於此架構下,此研究結合基於共識解之垂降控制與虛擬同步機控制技術,同時亦透過非線性能量函數穩定度框架確保整體系統之穩定度,此外亦於實時模擬環境下建構採用所提控制之微電網系統,驗證此研究於實際系統之可行性。
再者,儘管慣常之共識解控制可達成分散式發電源之輸出分配,且同時確保整體系統之穩定度,此控制之收斂速度及系統彈性大幅受制於所採用之通訊網路結構。為達成更佳之控制收斂速度及控制系統抗干擾能力,此研究採用交替方向乘子法作為二次控制階層之演算法。此演算法複雜之最佳化問題分解成子問題平行運算,在交替運算得到整體問題之最佳解,因此可大幅加快控制目標之收斂速度。此研究首先將微電網二次控制階層之控制目標以最佳化問題形式建構,接著提出兩種採用不同通訊架構之交替方向乘子法,其後確認所提控制之穩定度亦可在非線性能量函數框架獲得驗證,並於實時模擬環境下建構微電網驗證所提控制之可行性與性能。
最後,儘管於微電網二次控制階層設置網路通訊系統,可有效達成各發電源之輸出分配並強化系統之穩定度,此作法亦使控制系統暴露於網路惡意攻擊之風險下。為深入瞭解惡意攻擊對微電網系統之影響,此研究首先建構一分散式二次控制法,其後在演算法中刻意加入代表網路攻擊之擾動,推導網路通訊與物理電路間互相影響下可觀測得的狀態變化,藉此設計對應網路攻擊之偵測及隔離策略。網路攻擊模型包含只對特定通訊鏈結作擾動,以及直接竄改一運算節點之狀態兩種模型。應對策略則得利於所提之分散式演算法,可僅透過各運算節點檢查自身之運算指標達成,而不需廣泛擷取整個運算網路的狀態。最後亦將所提控制建構在實時模擬環境
下,藉以驗證其於實際微電網系統之可行性。
High penetration of distributed generation units in microgrids has led to challenges of incorporating the generation resources while maintaining the frequency and voltage stability. Traditionally, the coordination of converter-based generation is achieved by autonomous droop control, which suffers from dependence on the grid topology and power line impedances. Adopting the communication infrastructure that supports the microgrid operations, the coordinated secondary control can resolve this problem by judiciously dispatching active power resources and reactive power support. Nevertheless, the conventional centralized secondary control architecture requires high-cost communication infrastructure and is low in scalability. Due to inherently distributed and heterogeneous nature of the microgrid, it becomes an ideal platform for applications of distributed control algorithms. To this end, this dissertation aims to develop novel distributed secondary control for power converters in microgrids. The control algorithm is based on multi-agent consensus control and will be able to enhance both the real-time frequency and voltage stability.
First, the consensus-based droop control with sparse communication network is proposed to overcome the drawback of existing droop control methods. In particular, when line impedances of the power grid are either lossy with the uniform R/X ratio or even pure resistive, the consensus droop control is still an effective method for autonomous real and reactive power sharing. In addition, closed-loop system stability of the proposed consensus-based droop control method can be ensured by the energy function approach under certain mild conditions. Real-time simulations of two microgrid systems are studied to validate the feasibility of the proposed consensus-based droop control method.
Second, the conventional distributed interface converters (DICs) used in the AC microgrid have raised a major concern since they do not have a rotating mass. The almost inertia-less DIC-based microgrid configuration may result in poor frequency and voltage response during large disturbance. In order to overcome this difficulty, the virtual synchronous generator (VSGs) was proposed recently in which the DIC mimics conventional synchronous generators (SGs) by designing proper parameters of the SG into each local droop control mechanism of the DIC.
Under this framework, we deploy the distributed consensus-based control algorithm in the secondary control level of VSGs. With only neighboring information exchanged between VSGs, both the restoration of nominal operating point and the accurate generation coordination of resources can be achieved. The stability of the closed-loop system is ensured by the transient energy function under certain mild conditions. Numerical experiments of a 14-bus/6-DIC microgrid system on real-time simulators are performed to validate the effectiveness of the proposed control mechanism.
Third, although the average consensus algorithm can ensure the stability of operation points while achieving accurate power sharing among VSGs in microgrid, its convergence rate and the resilience to noises are still not satisfactory. Therefore, two implementations of consensus-based distributed droop control by the Alternating Direction Multipliers Method (ADMM) are proposed. By employing the ADMMs in the secondary control level, it can be shown that the closed-loop system is described by the second-order vector differential equation, and the stability of every trajectory can be analyzed by the energy function approach under certain mild conditions. Real-time digital simulations are performed to validate the effectiveness of the proposed distributed droop control mechanism.
Moreover, a communication-based distributed frequency control framework also exposes the microgrid assets to potential malicious cyber-attacks. To study this problem, a distributed secondary control design for isolated microgrids is first developed, and the countermeasures for malicious attacks on the communication network are then investigated. The proposed design architecture consists of the local droop control at the primary level and a distributed node-to-node update at the secondary level. The latter aims to achieve a proportional power sharing while maintaining the nominal system frequency. By casting it as a consensus optimization problem, we adopt the partial primal-dual (PPD) algorithm for a totally distributed update requiring only neighboring information exchange. Interestingly, the specially designed PPD-based control rules would mimic the network power flow dynamics. Furthermore, two types of malicious attacks on the communication network, namely, the link and node attacks, are studied. Model-based anomaly detection and localization strategies are developed based on the dual variable related metrics. Numerical simulations have been performed under a real-time simulation environment to demonstrate the effectiveness of the proposed control design and countermeasure metrics.
CHINESE ABSTRACT I
ENGLISH ABSTRACT II
ACKNOWLEDGEMENTS V
Contents VI
List of Figures XI
List of Tables XIV
Abbreviations XV
1 Introduction 1
1.1 Overview 1
1.2 Contributions of The Dissertation 6
2 Consensus-Based Droop Control Synthesis for Multiple DICs in Isolated Microgrids 9
2.1 Background 10
2.1.1 Mathematical Preliminaries 10
2.1.2 Structure-Preserving Models 12
2.1.3 Droop Control by EF Approach 13
2.2 Microgrid Droop Control in Structure-Preserving
Models 14
2.2.1 Model Descriptions 15
2.2.2 Equilibrium Analysis 16
2.2.3 Conventional Droop Control 17
2.3 Recent Droop-Control Methods 20
2.3.1 P-f and Q-Vdot Droop Control 20
2.3.2 Stability Analysis 23
2.3.3 Droop with Both f and Vdot Restorations 27
2.4 Consensus-Based Droop Control 29
2.4.1 Graph Theory and Consensus Algorithm 29
2.4.2 Operation Principles 30
2.4.3 Stability Analysis by EF 33
2.5 Real-Time Simulation Results 33
2.5.1 7-Bus Microgrid with a Single Load 35
2.5.2 14-Bus Microgrid with Multiple Loads 37
2.6 Summary 37
2.7 Appendix: Compact Forms of P-f and Q-Vdot Droop Control 40
2.8 Appendix: Compact Form for Droop with Both f and Vdot Restorations 41
3 Consensus-Based Secondary Frequency and Voltage Droop Control of Virtual
Synchronous Generators for Isolated AC Microgrids 43
3.1 Background 44
3.1.1 Average Consensus Algorithm 44
3.1.2 Virtual Synchronous Generator 45
3.2 Decentralized Local Droop Control 47
3.2.1 Model Descriptions 47
3.2.2 Control Objectives 49
3.2.3 P-f/Q-Vdot Droop Control 49
3.3 Local Droop Control with Virtual Inertia 51
3.3.1 Mechanism 51
3.3.2 Stability Analysis 52
3.4 Consensus-Based Droop Control of VSGs 54
3.4.1 Mechanism 54
3.4.2 Stability Analysis by TEF Approach 55
3.4.3 Steady-State Behaviours of Consensus-Based Droop Control 57
3.5 Real-Time Simulations 59
3.5.1 With and Without Consensus Mechanism 61
3.5.2 Damping Effects of Virtual Inertia 62
3.6 Summary 64
3.7 Appendix: Validity of TEF W(ˆy,ˆz) 67
4 Consensus-Based Droop Control of Isolated Microgrids by ADMM Implementations 70
4.1 Average Consensus Through ADMM 70
4.2 Droop Control in Isolated AC MGs 74
4.2.1 Problem Formulation 74
4.2.2 Model Descriptions 75
4.3 Consensus-Based Droop Control of VSGs 77
4.3.1 Optimal Stable Equilibrium Point 78
4.3.2 Consensus Optimization 78
4.3.3 ADMM Implementations 79
4.3.4 ADMM Implementations with Flexible Droop Gain Ratios 80
4.4 Stability Analysis of Closed-Loop MG Systems with Consensus-Based Droop Controlled VSGs 82
4.4.1 P-f/Q-Vdot Droop 83
4.4.2 ADMM Implementations 84
4.4.3 ADMM Implementations with Flexible Droop Gain Ratios 86
4.5 Real-Time Simulations 87
4.6 Summary 91
4.7 Appendix: Formulations of ˆM, ˆD, ˆA and ˆA_f 92
4.8 Appendix: Validity of EF W(ˆy,ˆz) 93
5 Frequency Control In Isolated Microgrids: Distributed Implementation And Intrusion Detection 95
5.1 System Model 96
5.1.1 P-ω Droop Control of DICs 96
5.1.2 Microgrid Network Dynamics 97
5.1.3 Equilibrium Points of Droop Controlled DICs 98
5.1.4 Consensus Optimization 99
5.2 Distributed Secondary Control Design 100
5.2.1 Update Design 100
5.2.2 Choice of Stepsize 102
5.3 Attack Models and Countermeasures 104
5.3.1 Link Attack 105
5.3.2 Node Attack 106
5.3.3 Detection/Localization Strategies 108
5.3.4 Decision Making in Energy Management System 109
5.4 Numerical Tests 111
5.4.1 Case I: Convergence Analysis 112
5.4.2 Case II: Link Attack 112
5.4.3 Case III: Node Attack 116
5.5 Summary 121
5.6 Appendix: Derivation of Update Design (5.13) 124
5.6.1 ˆf_ij-update 124
5.6.2 x-update and µ-update 124
5.7 Appendix: Convergence of Consensus Iterations (5.19) 125
6 Conclusions and Future Works 126
6.1 Conclusions 126
6.2 Future Works 129
Bibliography 131
Vita 143
[1] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado, and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans. Power Del., vol. 26, pp. 325–332, Jan. 2011.
[2] M. C. Chandorkar, D. M. Divan, and B. Banerjee, “Control of distributed UPS systems,” in Proc. IEEE Power Electronics Specialists Conference, 1994, pp. 197–204.
[3] A. Engler and N. Soultanis, “Droop control in LV-grids,” in Proc. IEEE International Conference on Future Power Systems, 2005, pp. 1–6.
[4] Q. C. Zhong and G. Weiss, “Synchronverters: inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., vol. 58, pp. 1259–1267, Apr. 2011.
[5] C. K. Sao and P. W. Lehn, “Autonomous load sharing of voltage source converters,” IEEE Trans. Power Del., vol. 20, pp. 1009–1016, Apr. 2005.
[6] K. D. Brabandere, B. Bolsens, J. V. d. Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. Power Electron., vol. 22, pp. 1107–1115, Jul. 2007.
[7] J. W. Simpson-Porco, F. D¨orfler, and F. Bullo, “Voltage stabilization in microgrids via quadratic droop control,” in Proc. IEEE Conference on Decision and Control, 2013, pp. 7582–7589.
[8] C. T. Lee, C. C. Chu, and P. T. Cheng, “A new droop control method for the autonomous operation of distributed energy resource interface converters,” IEEE Trans. Power Electron., vol. 28, pp. 1980–1993, Apr. 2013.
131[9] K. Walve, “Modeling of power system components at severe disturbance,” CIGRE Report, 38-18, 1986.
[10] J. F. Gronquist, W. A. Sethares, F. L. Alvarado, and R. H. Lasseter, “Power oscillation damping control strategies for FACTs devices using locally measurable quantities,” IEEE Trans. Power Syst., vol. 10, pp. 1598–1605, Aug. 1995.
[11] M. Ghandhari, G. Andersson, and I. A. Hiskens, “Control Lyapunov functions for controllable series devices,” IEEE Trans. Power Syst., vol. 16, pp. 689–694, Nov. 2001.
[12] R. Mihalic and U. Gabrijel, “A structure-preserving energy function for a static series synchronous compensator,” IEEE Trans. Power Syst., vol. 19, pp. 1501–1507, Aug. 2004.
[13] S. Y. Ruan, G. J. Li, B. T. Ooi, and Y. Z. Sun, “Power system damping from energy function analysis implemented by voltage-source-converter stations,” Electric Power Systems Research, vol. 78, pp. 1353–1360, Aug. 2008.
[14] IEEE-PES Task Force on Microgrid Control, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, pp. 1905–1919, Jul. 2014.
[15] R. Olfati-Saber, J. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, pp. 215–233, Jan. 2007.
[16] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control Syst. Mag., vol. 27, pp. 71–82, Apr. 2007.
[17] A. E. Bryson, Dynamic Optimization. Addison Wesley Longman, Massachusetts, U.S.A., 1999.
[18] A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Physics Reports, vol. 469, pp. 93 – 153, 2008.
[19] M. E. Baran and I. M. El-Markabi, “A multiagent-based dispatching scheme for distributed generators for voltage support on distribution feeders,” IEEE Trans. Power Syst., vol. 22, pp. 52–59, Feb. 2007.
132[20] B. A. Robbins, C. N. Hadjicostis, and A. D. Dominguez-Garcia, “A two-stage distributed architecture for voltage control in power distribution systems,” IEEE Trans. Power Syst., vol. 28, pp. 1470–1482, May 2013.
[21] S. Yang, S. Tan, and J.-X. Xu, “Consensus based approach for economic dispatch problem in a smart grid,” IEEE Trans. Power Syst., vol. 28, pp. 4416–4426, Nov. 2013.
[22] Z. Zhang and M. Y. Chow, “Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid,” IEEE Trans. Power Syst., vol. 27, pp. 1761–1768, Nov. 2012.
[23] Y. Xu, W. Liu, and J. Gong, “Stable multi-agent-based load shedding algorithm for power systems,” IEEE Trans. Power Syst., vol. 26, pp. 2006–2014, Nov. 2011.
[24] S. T. Cady and A. D. Dominguez-Garcia, “Distributed generation control of small-footprint power systems,” in Proc. IEEE North American Power Symposium, 2012, pp. 1–6.
[25] N. Ainsworth and S. Grijalva, “A line weighted frequency droop controller for decentralized enforcement of transmission line power flow constraints in inverter-based networks,” in Proc. IEEE Power and Energy Society General Meeting, 2013, pp. 1–5.
[26] H. Liang, B. J. Choi, W. Zhuang, and X. Shen, “Stability enhancement of decentralized inverter control through wireless communications in microgrids,” IEEE Trans. Smart Grid, vol. 4, pp. 321–331, Mar. 2013.
[27] J. W. Simpson-Porco, F. D¨orfler, and F. Bullo, “Synchronization and power sharing for droop-controlled inverters in islanded microgrids,” Automatica, vol. 49, pp. 2603–2611, Sept. 2013.
[28] Y. Xu, W. Zhang, W. Liu, X. Wang, F. Ferrese, C. Zang, and H. Yu, “Distributed subgradient-based coordination of multiple renewable generators in a microgrid,” IEEE Trans. Power Syst., vol. 29, pp. 23–33, Jan. 2014.
[29] W. Zhang, Y. Xu, W. Liu, F. Ferrese, and L. Liu, “Fully distributed coordination of multiple DFIGs in a microgrid for load sharing,” IEEE Trans. Smart Grid, vol. 4, pp. 806–815, Jun. 2013.
[30] J. W. Simpson-Porco, F. D¨orfler, F. Bullo, Q. Shafiee, and J. M. Guerrero, “Stability, power sharing, & distributed secondary control in droop-controlled microgrids,” in Proc. IEEE International Conference on Smart Grid Communications, 2013, pp. 672–677.
[31] S. T. Cady, A. D. Dom´ınguez-Garc´ıa, and C. N. Hadjicostis, “A distributed generation control architecture for islanded AC microgrids,” IEEE Trans. Control Syst. Technol., vol. 23, pp. 1717–1735, Sep. 2015.
[32] N. Soni, S. Doolla, and M. C. Chandorkar, “Improvement of transient response in microgrids using virtual inertia,” IEEE Trans. Power Del., vol. 28, pp. 1830–1838, Jul. 2013.
[33] J. O’Sullivan, A. Rogers, D. Flynn, P. Smith, A. Mullane, and M. O’Malley, “Studying the maximum instantaneous non-synchronous generation in an island system–frequency stability challenges in Ireland,” IEEE Trans. Power Syst., vol. 29, pp. 2943–2951, Nov. 2014.
[34] J. H. Liu, C. C. Chu, and Y. Z. Lin, “Applications of nonlinear control for fault ride-through enhancement of doubly fed induction generators,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, pp. 749–763, Dec. 2014.
[35] Q.-C. Zhong, P.-L. Nguyen, Z. Ma, and W. Sheng, “Self-synchronized synchronverters: Inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, pp. 617–630, Feb. 2014.
[36] J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE J. Emerg. Sel. Topic Power Electron., vol. 3, pp. 451–458, Jun. 2015.
[37] S. D’Arco and J. Suul, “Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids,” IEEE Trans. Smart Grid, vol. 5, pp. 394–395, Jan. 2014.
[38] S. DArco, J. A. Suul, and O. B. Fosso, “A virtual synchronous machine implementation for distributed control of power converters in smartgrids,” Electr. Power Syst. Res., vol. 122, pp. 180 – 197, 2015.
[39] F. Andrade Andrade, L. Romeral, J. Cusido, and J. Cardenas, “New model of a converter-based generator using electrostatic synchronous machine concept,” IEEE Trans. Energy Convers., vol. 29, pp. 344–353, Jun. 2014.
[40] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Ind. Informat., vol. 9, pp. 427–438, Feb. 2013.
[41] D. P. Bertseka and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. New York: Athena Scientific, 2003.
[42] J. Zhang, S. Nabavi, A. Chakrabortty, and Y. Xin, “ADMM optimization strategies for wide-area oscillation monitoring in power systems under asynchronous communication delays,” IEEE Trans. Smart Grid, vol. 7, pp. 2123–2133, Jul. 2016.
[43] Y. Wang, L. Wu, and S. Wang, “A fully-decentralized consensus-based ADMM approach for DC-OPF with demand response,” IEEE Trans. Smart Grid, to be published.
[44] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consensus by the alternating direction multipliers method,” IEEE Trans. Signal Process., vol. 59, pp. 5523–5537, Nov. 2011.
[45] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on the smart grid,” IEEE Trans. Smart Grid, vol. 2, pp. 645–658, Dec. 2011.
[46] O. Vukovi`c and G. D`an, “Security of fully distributed power system state estimation: Detection and mitigation of data integrity attacks,” IEEE J. Sel. Areas in Commun., vol. 32, pp. 1500–1508, Jul. 2014.
[47] S. Sridhar and M. Govindarasu, “Model-based attack detection and mitigation for automatic generation control,” IEEE Trans. Smart Grid, vol. 5, pp. 580–591, March 2014.
[48] S. Nabavi and A. Chakrabortty, “An intrusion-resilient distributed optimization algorithm for modal estimation in power systems,” in Proc. IEEE Conference on Decision and Control, 2015, pp. 39–44.
[49] P. Srikantha and D. Kundur, “A der attack-mitigation differential game for smart grid security analysis,” IEEE Trans. Smart Grid, vol. 7, pp. 1476–1485, May 2016.
[50] A. Teixeira, K. Paridari, H. Sandberg, and K. H. Johansson, “Voltage control for interconnected microgrids under adversarial actions,” in Proc. IEEE Conference on Emerging Technologies and Factory Automation, Sep. 2015, pp. 1–8.
[51] X. Liu, M. Shahidehpour, Z. Li, X. Liu, Y. Cao, and Z. Li, “Power system risk assessment in cyber attacks considering the role of protection systems,” IEEE Trans. Smart Grid, to be published.
[52] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear iterative strategies in the presence of malicious agents,” IEEE Trans. Autom. Control, vol. 56, pp. 1495–1508, Jul. 2011.
[53] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable networks: A system theoretic approach,” IEEE Trans. Autom. Control, vol. 57, pp. 90–104, Jan. 2012.
[54] H. J. LeBlanc, H. Zhang, S. Sundaram, and X. Koutsoukos, “Consensus of multi-agent networks in the presence of adversaries using only local information,” in Proc. Intl. Conf. on High Confidence Netw. Syst., ser. HiCoNS ’12. New York, NY, USA: ACM, 2012, pp. 1–10.
[55] H. D. Chiang and C. C. Chu, “A systematic search method for obtaining multiple local optimal solutions of nonlinear programming problems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 43, pp. 99–109, Feb. 1996.
[56] H. D. Chiang and R. Jean-Jumeau, “Optimal network reconfigurations in distribution systems: part 2 : solution algorithms and numerical results,” IEEE Trans. Power Del., vol. 5, pp. 1568–1574, Jul. 1990.
136[57] G. D´ıaz and C. Gonz´alez-Moran, “Fischer-Burmeister-based method for calculating equilibrium points of droop-regulated microgrids,” IEEE Trans. Power Syst., vol. 27, pp. 959–967, May 2012.
[58] H.-D. Chiang and F. Wu, “Stability of nonlinear systems described by a second-order vector differential equation,” IEEE Trans. Circuits Syst., vol. 35, pp. 703–711, Jun. 1988.
[59] L. Y. Lu and C. C. Chu, “Robust consensus-based droop control for multiple power converters in isolated micro-grids,” in Proc. IEEE International Symposium on Circuits and Systems, 2014, pp. 1820–1823.
[60] L. Y. Lu, H. J. Liu, and H. Zhu, “Distributed secondary control for isolated microgrids under malicious attacks,” in Proc. IEEE North American Power Symposium, Sep. 2016, pp. 1–6.
[61] H.-D. Chiang, Y. Tada, and H. Li, Power System On-Line Transient Stability Assessment. John Wiley & Sons, Inc., 2001. [Online]. Available:
http://dx.doi.org/10.1002/047134608X.W6220.pub2
[62] C.-C. Chu and H.-D. Chiang, “Constructing analytical energy functions for lossless network-reduction power system models: Framework and new developments,” Circuits, Syst., Signal Process., vol. 18, pp. 1–16, 1999.
[63] H. G. Kwatny, A. K. Pasrija, and L. Y. Bahar, “Static bifurcations in electric power networks: loss of steady-state stability and voltage collapse,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 981–991, Oct. 1986.
[64] J. Lee and H. D. Chiang, “A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems,” IEEE Trans. Autom. Control, vol. 49, pp. 888–899, Jun. 2004.
[65] G. Diaz, C. Gonzalez-Moran, J. Gomez-Aleixandre, and A. Diez, “Complex-valued state matrices for simple representation of large autonomous microgrids supplied by PQ and Vf generation,” IEEE Trans. Power Syst., vol. 24, pp. 1720–1730, Nov. 2009.
[66] G. Diaz, C. Gonzalez-Moran, J. Gomez-Aleixandre, and A. Diez, “Composite loads in stand-alone inverter-based microgrids-modeling procedure and effects on load margin,” IEEE Trans. Power Syst., vol. 25, pp. 894–905, May 2010.
[67] C.-C. Chang, D. Gorinevsky, and S. Lall, “Dynamical and voltage profile stability of inverter-connected distributed power generation,” IEEE Trans. Smart Grid, vol. 5, pp. 2093–2105, Jul. 2014.
[68] N. Ainsworth and S. Grijalva, “A structure-preserving model and suffcient condition for frequency synchronization of lossless droop inverter-based AC networks,” IEEE Trans. Power Syst., vol. 28, pp. 4310–4319, Nov. 2013.
[69] H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications. John Wiley& Sons, U.S.A., 2011.
[70] H. D. Chiang, C. C. Chu, and G. Cauley, “Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective,” Proc. IEEE, vol. 83, pp. 1497–1529, Nov. 1995.
[71] N. A. Tsolas, A. Arapostathis, and P. P. Varaiya, “A structure preserving energy function for power system transient stability analysis,” IEEE Trans. Circuits Syst., vol. CAS-32, pp. 1041–1049, Oct. 1985.
[72] P. Varaiya, F. Wu, and R.-L. Chen, “Direct methods for transient stability analysis of power systems: Recent results,” Proc. IEEE, vol. 73, pp. 1703–1715, Dec. 1985.
[73] Y. Zou, M.-H. Yin, and H.-D. Chiang, “Theoretical foundation of the controlling UEP method for direct transient-stability analysis of network-preserving power system models,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, pp. 1324–1336, Oct. 2003.
[74] A. R. Bergen and D. J. Hill, “A structure preserving model for power system stability analysis,” IEEE Trans. Power App. Syst., vol. PAS-100, pp. 25–35, Jan. 1981.
138[75] A. Bergen, D. Hill, and C. L. D. MArco, “Lyapunov function for multimachine power systems with generator flux decay and voltage dependent loads,” Int. J. Elec. Power & Energy Syst., vol. 8, pp. 2–10, 1986.
[76] G. D´ıaz, C. Gonz´alez-Moran, J. G´omez-Aleixandre, and A. Diez, “Scheduling of droop coeffcients for frequency and voltage regulation in isolated microgrids,” IEEE Trans. Power Syst., vol. 25, pp. 489–496, Feb. 2010.
[77] G. D´ıaz, “Complementarity constraint approach for determining equilibria in microgrids with scarce power reserves,” IEEE Trans. Power Syst., vol. 26, pp. 2579–2580, Nov. 2011.
[78] V. Vittal and A. N. Michel, “Stability and security assessment of a class of systems governed by LaGrange’s equation with application to multi-machine power systems,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 623–635, Jun. 1982.
[79] Y. H. Moon, E. H. Lee, and T. H. Roh, “Development of an energy function reflecting the transfer conductances for direct stability analysis in power systems,” IEE Proc.-Generation, Transmission and Distribution, vol. 144, no. 5, pp. 503–509, 1997.
[80] Y. H. Moon, B. H. Choi, T. H. Rho, and B. K. Choi, “The development of equivalent system technique for deriving an energy function reflecting transfer conductances,” IEEE Trans. Power Syst., vol. 14, pp. 1335–1341, Nov. 1999.
[81] Y. Susuki and I. Mezic, “Nonlinear Koopman modes and precursor to power system swing instabilities,” IEEE Trans. Power Syst., vol. 27, pp. 1182–1191, Aug. 2012.
[82] Y. H. Moon, H. S. Ryu, B. H. Cho, and B. Kim, “Second-kind energy function of power system and its applications,” in Proc. IEEE Power Engineering Society Summer Meeting, 2001, pp. 1542–1547.
[83] D. B. West, Introduction to Graph Theory, 2nd ed. Pearson, 2000.
[84] R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, pp. 2768–2778, Oct. 2010.
[85] R. Majumder, G. Bag, and K.-H. Kim, “Power sharing and control in distributed generation with wireless sensor networks,” IEEE Trans. Smart Grid, vol. 3, pp. 618–634, Jun. 2012.
[86] C. Dufour and J. Belanger, “A PC-based real-time parallel simulator of electric systems and drives,” in Proc. IEEE Parallel Computing in Electrical Engineering, 2004, pp. 105–113.
[87] W. Yu, G. Chen, W. Ren, J. Kurths, and W. X. Zheng, “Distributed higher order consensus protocols in multiagent dynamical systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, pp. 1924–1932, Aug. 2011.
[88] W. Yu, L. Zhou, X. Yu, J. Lu, and R. Lu, “Consensus in multi-agent systems with second-order dynamics and sampled data,” IEEE Trans. Ind. Informat., vol. 9, pp. 2137–2146, Nov. 2013.
[89] X. Zhang and X. Liu, “Further results on consensus of second-order multi-agent systems with exogenous disturbance,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, pp. 3215–3226, Dec. 2013.
[90] H. Du, Y. He, and Y. Cheng, “Finite-time synchronization of a class of second-order non-linear multi-agent systems using output feedback control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, pp. 1778–1788, Jun. 2014.
[91] M. Torres L, L. Lopes, L. Moran T, and J. Espinoza C, “Self-tuning virtual synchronous machine: A control strategy for energy storage systems to support dynamic frequency control,” IEEE Trans. Energy Convers., no. 4, pp. 833–840, Dec. 2014.
[92] A. Bergen and V. Vittal, Power Systems Analysis. Prentice Hall, 2000.
[93] L. Y. Lu and C. C. Chu, “Consensus-based droop control synthesis for multiple DICs in isolated micro-grids,” IEEE Trans. Power Syst., vol. 30, pp. 2243–2256, Nov. 2014.
[94] C.-C. Chu and H.-D. Chiang, “Constructing analytical energy functions for network-preserving power system models,” Circuits, Syst., Signal Process., vol. 24, pp. 363–383, 2005.
[95] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
[96] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc WSNs with noisy linkspart i: Distributed estimation of deterministic signals,” IEEE Trans. Signal Process., vol. 56, pp. 350–364, Jan. 2008.
[97] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel decoding,” IEEE Trans. Signal Process., vol. 57, pp. 3970–3983, Oct. 2009.
[98] L. Y. Lu and C. C. Chu, “Consensus-based secondary frequency and voltage droop control of virtual synchronous generators for isolated AC micro-grids,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 5, pp. 443–455, Sep. 2015.
[99] H. K. Khail, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
[100] C. Dufour and J. Belanger, “On the use of real-time simulation technology in smart grid research and development,” IEEE Trans. Ind. Appl., vol. 50, pp. 3963–3970, Nov. 2014.
[101] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone AC supply systems,” IEEE Trans. Ind. Appl., vol. 29, pp. 136–143, Jan. 1993.
[102] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side primary frequency control in power systems,” IEEE Trans. Autom. Control, vol. 59, pp. 1177–1189, May 2014.
[103] H. J. Liu, W. Shi, and H. Zhu, “Decentralized dynamic optimization for power network voltage control,” IEEE Trans. Signal Inform. Process. Netw., to be published.
[104] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control and economic dispatch from an optimization view,” IEEE Trans. Control Netw. Syst., vol. 3, pp. 254–264, Sep. 2016.
[105] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[106] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. & Control Lett., vol. 53, no. 1, pp. 65–78, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊