|
[1] Krymski, N. Khaliullin, H. Rhodes, “A 2e- Noise 1.3 Megapixel CMOS Sensor,” in Proc. IEEE Workshop CCD and Advance Image Sensors, June 2003. [2] S. Kawahito, “Signal Processing Architectures for Low-Noise High-Resolution CMOS Image Sensors,” in Proc. Custom Integrated Circuits Conference (CICC), pp.695-702, 2007. [3] S. Kawahito, N. Kawai, “Column parallel signal processing techniques for Reducing Thermal and random telegraph noise in CMOS image sensors,” in Proc. Int. Image Sensor Workshop, Maine, June 2007. [4] N. Kawai and S. Kawahito, “Effectiveness of a correlated multiple sampling differential average for reducing 1/f noise,” IEICE Electronics Express, vol.2, no.13, pp. 379-383, 2005. [5] T. Iida, M.A. Mustafa, L. Zhou, K. Yasutomi, S. Itoh, S. Kawahito, “A Column Parallel Cyclic ADC with an Embedded Programmable Gain Amplifier for CMOS Image Sensors,” Extended Abstract of the 2010 International Conference on Solid State Devices and Materials, pp. 1152-1153, 2010. [6] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag., vol. 21, no. 3, pp. 6–20, May/Jun. 2005. [7] IC Insights, Inc., “CMOS Image Sensors See Higher Growth from Greater Diversity of Uses,” [Online]. Available: http://www.icinsights.com/news/bulletins/CMOS-Image-Sensors-See-Higher-Growth-From-Greater-Diversity-Of-Uses/ [8] IERC, “The definition of Internet of Things,” [Online]. Available: http://iotresearch.wikispaces.com/IoT%E7%9A%84%E5%AE%9A%E7%BE%A9 [9] IEI Integration Corp., “The solution of Internet of Things,” [Online]. Available: http://www.ieiworld.com/2013_GITEX_IoT_Solution/index.html [10] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013. [11] D. Bol, J. De Vos, F. Botman, G. de Streel, S. Bernard, D. Flandre, and J. D. Legat, “Green SoCs for a sustainable Internet-of-Things,” 2013 IEEE Faible Tension Faible Consommation (FTFC), 2013. [12] NSPO, “Space Programs FORMOSAT-5 Program Description,” [Online]. Available: http://www.nspo.narl.org.tw/en2016/projects/FORMOSAT-5/program-description.html [13] Chin Yin, Chin-Fong Chiu, Chih-Cheng Hsieh. “A 0.5 V, 14.28-kframes/s, 96.7-dB Smart Image Sensor With Array-Level Image Signal Processing for IoT Applications,” IEEE Transactions on Electron Devices, vol. 63, no. 3, 1134–1140, Feb. 2016. [14] J. Yoshida. (2008, May, 27), “OmniVison adopts backside illumination technology for CMOS imager. EE Times,” [Online]. Available: http://www.eetimes.com/document.asp?doc_id=1308993 [15] Sony, “Sony develops back-illuminated CMOS image sensor, realizing high picture quality, nealy twofold sensitivity and low noise,” [Online]. Available: http://www.sony.net/SonyInfo/News/Press/200806/08-069E/index.html [16] M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE Journal of Solid-State Circuits, vol. 9, pp. 1-12, 1974. [17] J. A. Leñero-Bardallo, J. Fernández-Berni, and Á. Rodríguez-Vázquez, “Review of ADCs for imaging,” in Proc. IS&T/SPIE Electronic Imaging, 2014, pp. 90220I-90220I-6. [18] M.-S. Shin, J.-B. Kim, M.-K. Kim, Y.-R. Jo, and O.-K. Kwon, “A 1.92-megapixel CMOS image sensor with column-parallel low-power and area-efficient SA-ADCs,” IEEE Transactions on Electron Devices, vol. 59, pp. 1693-1700, 2012. [19] Y. Chae, J. Cheon, S. Lim, M. Kwon, K. Yoo, W. Jung, D.-H. Lee, S.Ham, and G. Han, “A 2.1 M Pixels, 120 Frame/s CMOS image sensor with column-parallel ADC architecture,” IEEE Journal of Solid-State Circuits, vol. 46, pp. 236-247, 2011. [20] T. Watabe, K. Kitamura, T. Sawamoto, T. Kosugi, T. Akahori, T. Iida, K. Isobe, T. Watanabe, H. Shimamoto, and H. Ohtake, “A 33Mpixel 120fps CMOS image sensor using 12b column-parallel pipelined cyclic ADCs,” in Proc. IEEE International Solid-State Circuits Conference, 2012, pp. 388-390. [21] M. F. Snoeij, A. J. Theuwissen, K. A. Makinwa, and J. H. Huijsing, “Multiple-ramp column-parallel ADC architectures for CMOS image sensors,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 2968-2977, 2007. [22] K. Chen, M. Afghani, P. Danielsson, and C. Svensson, “PASIC: A processor-A/D converter-sensor integrated circuit,” in Proc. IEEE International Symposium on Circuits and Systems, pp. 1705-1708, 1990. [23] A. Dickinson, S. Mendis, D. Inglis, K. Azadet, and E. Fossum, “CMOS digital camera with parallel analog-to-digital conversion architecture,” in Proc. IEEE Workshop on Charge Coupled Devices and Advanced Image Sensors, 1995. [24] D. X. Yang, B. Fowler, and A. El Gamal, “A Nyquist-rate pixel-level ADC for CMOS image sensors,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 348-356, 1999. [25] B. Fowler, A. El Gamal, and D. X. Yang, “A CMOS area image sensor with pixel-level A/D conversion,” in Proc. IEEE International Solid-State Circuits Conference, 1994, pp. 226-227. [26] D. X. Yang, B. Fowler, and A. El Gamal, “A 128× 128 pixel CMOS area image sensor with multiplexed pixel level A/D conversion,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 1996, pp. 303-306. [27] U. Ringh, C. Jansson, and K. C. Liddiard, “Readout concept employing a novel on-chip 16-bit ADC for smart IR focal plane arrays,” in Proc. Aerospace/Defense Sensing and Controls, 1996, pp. 99-110. [28] P. Denyer, D. Renshaw, G. Wang, M. Lu, and S. Anderson, “On-chip CMOS sensors for VLSI imaging systems,” in Proc. VLSI-91, pp. 157–166, 1991. [29] J. Ohta, “Smart CMOS Image Sensors and Applications,” Boca Raton, FL: CRC Press, 2008. [30] B. Fowler, A. El Gamal, and H. Tian, “Analysis of temporal noise in CMOS photodiode active pixel sensor,” IEEE J. Solid-State Circuits, vol. 36, pp.92 -101, 2001 [31] Y. Endo, Y. Nitta, H. Kubo. T. Murao, K. Shimomura, M. Kimura. K. Watanabe and S. Komori. “4-mocron pixel CMOS image sensor with low image lag and high-temperature operability,” in Proc. SPIE, vol. 5017, pp.196-204, Santa Clara, CA, Jan. 2003. [32] I. Inoue, N. Tanaka, H. Yamashita, T. Uamaguchi, H. Ishiwata and H. Ihara. “Low-leakage-current and low-operating-voltage buried photodiode for a CMOS imager,” IEEE Trans. Electron Devices, vol. 50, no 1, pp.43-47, Jan. 2003. [33] S. F. Yeh, C. C. Hsieh, C. F. Chiu, and H. H. Tsai, “An Image Lag Free CMOS Image Sensor with Constant-Residue Reset,” in Proc. IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Apr. 2011. [34] Junichi Nakamura, “Image Sensors and Signal Processing for Digital Still Cameras,” Taylor & Francis, 2006. [35] R. N. Hall, “Electron-hole recombination in germanium,” Physical Review Letters, vol. 87, no. 2, pp. 387, Jul. 1952. [36] W. Shockley and W. T. Read, Jr., “Statistics of recombination of holes and electrons,” Physical Review Letters, vol. 87, no 5, pp. 835-842, Sep. 1952. [37] J. Johnson, “Thermal Agitation of Electricity in Conductors,” Physical Review Letters, vol. 32, no. 1, pp. 97-109, Jul. 1928. [38] H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Physical Review Letters, vol. 32, no. 1, pp. 110-113, Jul. 1928. [39] A. L. McWhorter, “1/f Noise and Related Surface Effects in Germanium,” PhD dissertation, Massachusetts Institute of Technology, 1955. [40] Xinyang Wang, “Noise in Sub-Micron CMOS Image Sensors,” PhD dissertation, Delft Technology University, 2008. [41] Yue Chen, “Low-Noise CMOS Image Sensors for Radio-Molecular Imaging,” PhD dissertation, Delft Technology University, 2012. [42] Sungho Suh, “A Study on Low Noise Wide Dynamic Range CMOS Image Sensors Using Low Noise High Gain Readout Circuits,” Doctoral Thesis, Shizuoka University, 2010. [43] I. Takayanagi etc. “A 600×600 Pixel, 500 fps CMOS Image Sensor with a 4.4μm Pinned Photodiode 5-Transistor Global Shutter Pixel,” in Proc. Int. Image Sensor Workshop, Ogunquit Maine, USA, 2007. [44] Yang Liu “The Design of a High Dynamic Range CMOS Image Sensor in 110nm Technology,” Master thesis, Delft University of Technology, pp. 19-20, Aug. 2012. [45] K. Yasutomi, S. Itoh, and S. Kawahito, “A Two-Stage Charge Transfer Active Pixel CMOS Image Sensor With Low-Noise Global Shuttering and a Dual-Shuttering Mode,” IEEE Trans. Electron Devices, vol. 58, pp. 740-747, 2011. [46] S. G. Wuu, C. -C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, C. S. Tsai, Y. P. Chao, K. Y. Chou, P. S. Chou, H. Y. Tu, F. L. Hsueh and L. Tran, “A leading-edge 0.9um pixel CMOS image sensor technology with backside illumination: Future challenges for pixel scaling,” IEEE IEDM Tech. Dig., 2010, pp. 14.1.1-14.1.4. [47] H. Rhodes, D. Tai, Y. Qian, D. Mao, V. Venezia Wei Zheng, Z. Xiong, C. Y. Liu, K. C. Ku, S. Manabe, A. Shah, S. Sasidhar, P. Cizdziei, Z. Lin, A. Ercan, M. Bikumandla, R. Yang, P. Matagne, C. Yang, H. Yang, T. J. Dai, J. Li, S. G. Wuu, D. N. Yaung, C. C. Wang, J. C. Liu, C. S. Tsai, Y. L. Tu, T. H. Hsu, “The mass production of BSI CMOS image sensors,” in Proc. Int. Image Sensor Workshop, 2009. [48] S. G. Chamberlain, J. P. Y. Lee, “A novel wide dynamic range silicon photodetector and linear imaging array,” IEEE Trans. Electron Devices, vol. ED-31, no. 2, pp. 175-182, Feb. 1984. [49] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Boagaerts, “A logarithmic response CMOS image sensor with on-chip calibration,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp.1146-1152, Aug. 2000. [50] O. Yadid-Pecht and E. R. Fossum, “Wide intrascene dynamic range CMOS APS using dual sampling,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1721-1723, Oct. 1997. [51] Y. Oike, A. Toda, T. Taura, A. Kato, H. Sato, M. Kasai, and T. Narabu, “A 121.8dB Dynamic Range CMOS Image Sensor using Pixel-Variation-Free Midpoint Potential Drive and Overlapping Multiple Exposures,” in Proc. Int. Image Sensor Workshop, Jun. 2007, pp. 30-33. [52] K. Dongsoo, C. Youngcheol, C. Jihyun, and H. Gunhee, “A Dual-Capture Wide Dynamic Range CMOS Image Sensor Using Floating-Diffusion Capacitor,” IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2590-2594, Oct. 2008. [53] K.P. Frohmader. “A novel MOS compatible light intensity-to-frequency converter suited for monolithic integration,” IEEE J. Solid-State Circuits, vol. 17, no. 3, pp.588–591, Jun. 1982. [54] R. Muller. “I2/L timing circuit for the 1 ms-10 s range,” IEEE J. Solid-State Circuits, vol. 12, no. 2, pp.139–143, Apr. 1977. [55] S. W. Smith, “The Scientist and Engineer's Guide to Digital Signal Processing,” [Online]. Available: http://www.dspguide.com/ch24/2.htm [56] H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices: Design and applications,” IBM J. Res. Develop., vol. 36, no. 1, pp. 83-105, Jan. 1992. [57] J. F. Johnson, “Modeling imager deterministic and statistical modulation transfer functions,” Appl. Opt., vol. 32, no. 32, pp. 6503–6513, Nov. 1993. [58] M. Zhang, A. Bermak, X. Li, and Z.Wang, “A low power CMOS image sensor design for wireless endoscopy capsule,” in Proc. IEEE Biomedical Circuits Syst. Conf., pp. 397–400, Nov. 2008. [59] C.-L. Lee and C.-C.Hsieh, “A 0.8-V 4096-Pixel CMOS Sense-and -Stimulus Imager for Retinal Prosthesis,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1162–1168, Mar. 2013. [60] S. Shishido, Y. Oguro, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “CMOS image sensor for recording of intrinsic-optical-signal of the brain,” in Proc. IEEE Int. Conf. SoC Design, pp. 190–193, Nov. 2009. [61] M.-T. Chung, C.-L. Lee, C. Yin and C.-C.Hsieh, “A 0.5 V PWM CMOS Imager With 82 dB Dynamic Range and 0.055% Fixed-Pattern-Noise,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2522–2530, Oct. 2013. [62] T. G. Constandinou and C. Toumazou, “A Micropower Centroiding Vision Processor,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1430–1443, Jun. 2006. [63] J. Choi, S. Park, J. Cho and E. Yoon, “A 3.4-μW Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 289–300, Jan. 2014. [64] M. Gottardi, N. Massari and S. A. Jawed, “A 100 μW 128 × 64 Pixels Contrast-Based Asynchronous Binary Vision Sensor for Sensor Networks Applications,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1582–1592, May. 2009. [65] S. Chen, W. Tang, X. Zhang, and E. Culurciello, “A 64 × 64 pixels UWB wireless temporal-difference digital image sensor,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 2232–2240, Dec. 2012. [66] T. S. Gotarredona and B. L. Barranco, “A 128 × 128 1.5% Contrast Sensitivity 0.9% FPN 3 µs Latency 4 mW Asynchronous Frame-Free Dynamic Vision Sensor Using Transimpedance Preamplifiers,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 827–838, Mar. 2013. [67] C. Yin and C.-C. Hsieh, “A 1V 14kfps Smart CMOS Imager with Tracking and Edge-detection Modes for Biomedical Monitoring,” in Proc. IEEE Int. Symp. on VLSI-DAT, pp. 1–4, Apr. 2013. [68] S.-H. Yang, Y. You and K.-R. Cho, “A New Dynamic D-Flip-Flop Aiming at Glitch and Charge Sharing Free,” IEICE Trans. Electron., vol. E86-C, no. 3, pp.496–505, Mar. 2003. [69] S. Chen and A. Bermak, “Arbitrated Time-to-First Spike CMOS Image Sensor With On-Chip Histogram Equalization,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 346–357, Mar. 2007. [70] G. Lepage, D. Dantès, and W. Diels, “CMOS long linear array for space application,” in Proc. SPIE 6068, Sensors, Cameras, and Systems for Scientific/Industrial Applications VII, 606807, Feb. 2006. [71] G. Lepage, J. Bogaerts, and G. Meynants, “Time-delay-integration architectures in CMOS image sensors,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2524–2533, Nov. 2009. [72] J.-H. Chang, K.-W. Cheng, C.-C. Hsieh, W.-H. Chang, H.-H. Tsai, and C.-F. Chiu, “Linear CMOS image sensor with time-delay integration and interlaced super-resolution pixel,” in Proc. IEEE Sensors, 2012, pp. 1–4. [73] K. Nie, S. Yao, J. Xu, J. Gao, and Y. Xia, “A 128-stage analog accumulator for CMOS TDI image sensor,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, no. 7, pp. 1952–1961, Jul. 2014. [74] E. Bodenstorfer, J. Fürtler, J. Brodersen, K. J. Mayer, C. Eckel, K. Gravogl, and H. Nachtnebel, “High-speed line-scan camera with digital time delay integration,” in Proc. SPIE 6496, Real-Time Image Processing 2007, 64960I, Feb. 2007. [75] K. Nie, R. J. Xu, and Z. Gao, “A 128-Stage CMOS TDI Image Sensor With On-Chip Digital Accumulator,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1319–1324, Mar. 2016. [76] H.-J. Kim, S.-I. Hwang, J.-W. Kwon, D.-H. Jin, B.-S. Choi, S.-G. Lee, J.-H. Park, J.-K. Shin, and S.-T. Ryu, “Delta readout scheme for image-dependent power savings in a CMOS image sensor with multi- column-parallel SAR ADCs,” in Proc. IEEE A-SSCC, 2015, pp. 1–4. [77] B. Murmann, “ADC Performance Survey 1997-2015,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [78] J.-Y. Lin, K.-H. Chang, C.-C. Kao, S.-C. Lo, Y.-J. Chen, P.-C. Lee, C.-H. Chen, C. Yin, and C.-C. Hsieh, “An 8-bit column-shared SAR ADC for CMOS image sensor applications,” in Proc. IEEE ISCAS, 2015, pp. 301–304. [79] E. R. Fossum, and D. B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” IEEE J. Electron Devices Society, vol. 2, no. 3, pp. 33–43, May 2014.
|