(3.238.186.43) 您好!臺灣時間:2021/03/01 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳易萱
研究生(外文):Chen, I Hsuan
論文名稱:設計與實現低功耗的穿戴式生理感測器
論文名稱(外文):Design and Implementation of a Low-Energy Wearable Physiological Sensor
指導教授:馬席彬
指導教授(外文):Ma, Hsi Pin
口試委員:吳仁銘蔡佩芸楊家驤
口試委員(外文):Wu, Ren MingTsai, Pei YunYang, Chia Hsiang
口試日期:2016-09-30
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:穿戴式裝置
外文關鍵詞:Wearable sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們提出一個低功耗的穿戴式生理感測裝置。
系統的架構包含微控制器、藍牙4.0和兩個前端感測的單晶片。我們的系統包含了三種類型的感測器,可分別量測心電訊號、呼吸的胸腔阻抗變化、和用戶的運動軌跡追蹤。以此感測器結合手機的應用程式,提供高解析度的高準確性的生理訊號,做到隨時隨地長期的生理訊號監控。
心電訊號透過電極貼片,量測胸腔體表電壓,採用16位元、250赫茲的取樣頻率。呼吸訊號的部分量測胸腔電阻變化,採用16位元、28赫茲的取樣頻率。運動軌跡感測器則由3軸的加速度計、地磁計、陀螺儀共同組成的一個慣性感測器,採用16位元、50赫茲的取樣頻率。透過手機或平板的應用程式控制,可以選擇單獨或同時接收記錄上述三種生理訊號。
透過韌體的設計,我們讓微控制器和藍芽分別在活動模式與睡眠模式間切換,以降低整個感測器的功耗。針對低功耗的設計包含了減少傳輸數據量、採取較高傳輸速度、集中傳輸使微控制器和藍芽系統的使用效率提高,減少系統的待機時間,以得到較長的時間可以停留在睡眠模式。
透過以上的這些設計,選擇心電跟呼吸感測器時,藍牙的功耗可以從32.2毫瓦減少到2.93毫瓦,所消耗的能量為原始版本的9%;選擇運動軌跡感測器時,藍牙的功耗可以從31.63毫瓦降低到4.26毫瓦,所消耗的能量為原始版本的13.5%。最大可節省29.27毫瓦。
此感測器裝備了電池容量為300豪安時的鋰電池。在3.3伏特的工作電壓下,使用心電與呼吸感測器時,功耗可從原來的39.21毫瓦降為9.93毫瓦,是原本的25.3%,可連續使用的時間從25小時提高到約100小時;使用運動軌跡感測器時,功耗從49.89毫瓦降為22.54毫瓦,為原本的45.14%,可連續使用的時間從19小時提高至44小時。
In this thesis, a wearable sensing device is proposed. The system is microcontroller-based and features Bluetooth Low Energy (BLE) technology for wireless transmission. Three types of sensors are integrated in our system. A wearable physiological device is developed to record single-lead electrocardiography (ECG) signals, respiration signals, and the motion trackings of users.
An ECG and respiration sensor is adapted to detect single-lead ECG signal and thorax impedance variation caused by respiration of the users. The sampling rate is 250 Hz for ECG and 28 Hz for respiration and the resolution is 16 bits for both. A inertial-measurement sensor with 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer is used to monitor the motion tracking. The sampling rate is 50 Hz and the resolution is 16 bits. Choose by the smart phone or tablet, these sensors can be selected and record the physiological signals individually or collectively.
By used of the firmware design, we switch the microcontroller and the bluetooth low energy between the active mode and sleep mode to make the reduction of the power consumption. This work also do with the down sampling of the sampling rate for respiration (250 to 28). It reduce the amount of data, and therefore the BLE can transmit the data faster and go into sleep mode longer. When we adopt the sleep mode, the power consumption of the BLE reduced from 32.2 mW to 6.03 mW. When also using the down sampling and down resolution, the power consumption of the BLE reduced to 2.93 mW, which is only 48.6% of the original version with sleep mode and 9% of the original version without sleep mode. For the 9-axis sensor, the power consumption of the BLE reduced from 31.63 mW to 4.26 mW, which is only 13.5 % of the version without sleep mode.
A 300 mAh battery can make device continuously recording and transmitting data for at least 43 hours. The power consumption for the ECG and respiration sensor is about 9.93 mW under 3.3 V operation voltage, and the power consumption is 22.54 mW for 9-axis sensor. It can reduce maximum 29.27 mW on BLE after this work on the BLE.
Abstract
i
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Characteristics of the Physiological Signals and Wireless Transmission Interface 5
2.1 Introduction to the Physiological Signals . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Electrocardiography (ECG) . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Motion tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Related Studies Summary . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Wireless Transmission Technology . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 BLE Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 BLE Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Proposed Physiological Sensing Device 21
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Front-End Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 ADS1292R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 MPU9250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Micro-controller MSP430F5438A . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Bluetooth Low Energy CC2541 . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Low-power Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 MSP430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 CC2541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Implementation Results 47
4.1 Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Physiological Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 ECG Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 9-axis Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5 Conclusion and Future Work 63
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
[1] (2016) Population age structure for taiwan. Department of Statistics, Ministry of the
Interior (Taiwan, ROC). [Online]. Available: http://statis.moi.gov.tw/micst/stmain.jsp
[2] “World population prospects: The 2015 revision,” 2015.
[3] N. Shiozawa, S. Arai, S. Okada, and M. Makikawa, “Gait analysis of sit-to-walk mo-
tion by using portable acceleration monitor device for fall prevention,” in Proceedings
of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics.
IEEE, 2012, pp. 563–564.
[4] R. Zhu and Z. Zhou, “A real-time articulated human motion tracking using tri-axis iner-
tial/magnetic sensors package,” IEEE Transactions on Neural systems and rehabilitation
engineering, vol. 12, no. 2, pp. 295–302, 2004.
[5] F. Mass´e, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized wireless ecg
monitor for real-time detection of epileptic seizures,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 4, p. 102, 2013.
[6] S. Sudin, F. Aziz, N. A. M. Hishamuddin, F. S. A. Saad, A. Y. M. Shakaff, A. Zakaria,
and A. F. Salleh, “Wearable heart rate monitor using photoplethysmography for motion,”
in Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on. IEEE,
2014, pp. 1015–1018.
[7] F. Mass´e, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized wireless ecg
monitor for real-time detection of epileptic seizures,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 4, p. 102, 2013.
[8] Y. Wang, S. Doleschel, R. Wunderlich, and S. Heinen, “A wearable wireless ecg monitor-
ing system with dynamic transmission power control for long-term homecare,” Journal
of medical systems, vol. 39, no. 3, pp. 1–10, 2015.
[9] E. Willem, “Galvanometrische registratie van het menschelijk electrocardiogram,” In:
Herinneringsbudendedl Professor S.S. Rosenstein. Leiden: Eduard Ijdo, 1902.
[10] J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bio-
electric and biomagnetic fields. Oxford University Press, USA, 1995.
[11] GigaOm. Could a breath-monitoring headset improve your health? [Online]. Available:
http://gigaom.com/2013/09/20/could-a-breath-monitoring-headsetimprove-your-health
[12] Vivonoetics. Respiration: Single or dual-band. [Online]. Available: http://vivonoetics.
com/products/vivosense/analyzing/respiration-single-or-dual-band/
[13] Wireless wristband pulse oximeter cms-50fw with software
for sleep study. [Online]. Available: http://www.clinicalguard.com/
wirelesswristband-pulse-oximeter-cms50fw-with-softwarefor-sleep-study-p-455.html
[14] ibabyguard. [Online]. Available: http://www.ibabyguard.com/
[15] P. de Chazal, E. O’Hare, N. Fox, and C. Heneghan, “Assessment of sleep/wake patterns
using a non-contact biomotion sensor,” in 2008 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008, pp. 514–517.
[16] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor
breathing and heart rate,” in Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. ACM, 2015, pp. 837–846.
[17] A. D. Droitcour, O. Boric-Lubecke, and G. T. Kovacs, “Signal-to-noise ratio in doppler
radar system for heart and respiratory rate measurements,” IEEE transactions on mi-
crowave theory and techniques, vol. 57, no. 10, pp. 2498–2507, 2009.
[18] Respiration Rate Measurement Based on Impedance Pneumography, Texas Instruments,
2011.
[19] J. M. Ernst, D. A. Litvack, D. L. Lozano, J. T. Cacioppo, and G. G. Berntson,
“Impedance pneumography: Noise as signal in impedance cardiography,” Psychophysi-
ology, vol. 36, no. 03, pp. 333–338, 1999.
[20] M. D. Jenkins, P. Barrie, T. Buggy, and G. Morison, “Extended fast compressive tracking
with weighted multi-frame template matching for fast motion tracking,” Pattern Recog-
nition Letters, vol. 69, pp. 82–87, 2016.
[21] M. Andrejaˇsic, “Mems accelerometers,” in University of Ljubljana. Faculty for mathe-
matics and physics, Department of physics, Seminar, 2008.
[22] R. O’Reilly, A. Khenkin, and K. Harney, “Sonic nirvana: Mems accelerometers as
acoustic pickups in musical instruments,” 2009.
[23] C. Acar and A. Shkel, MEMS vibratory gyroscopes: structural approaches to improve
robustness. Springer Science & Business Media, 2008.
[24] J. Geen and D. Krakauer, “New imems R
angular-rate-sensing gyroscope,” Analog Dia-
logue, vol. 37, no. 3, pp. 1–4, 2003.
[25] Gyroscope. [Online]. Available: http://sensorwiki.org/doku.php/sensors/gyroscope
[26] Measuring magnetic fields. [Online]. Available: https://www.nde-ed.org/
EducationResources/CommunityCollege/MagParticle/Physics/Measuring.htm
[27] J.-W. Jhuang, “A patch-sized wearable ecg/respiration recording platform with dsp ca-
pability,” Master’s thesis, 2014.
[28] C.-H. Wang, “Design and implementation of low-energy configurable integrated physi-
ological sensing system for wearable applications,” Master’s thesis, 2015.
[29] P. Smith. (2011) Comparing low-power wireless technologies.
[Online]. Available: http://www.digikey.com/en/articles/techzone/2011/aug/
comparing-low-power-wireless-technologies
[30] Sagawa. (2013) Quick thoughts: For payments, bluetooth puts a
beat down on nfc and wifis. [Online]. Available: http://ssrllc.com/
quick-thoughts-for-payments-bluetooth-puts-a-beat-down-on-nfc-and-wifi/
[31] A. Dementyev, S. Hodges, S. Taylor, and J. Smith, “Power consumption analysis of
bluetooth low energy, zigbee and ant sensor nodes in a cyclic sleep scenario,” in Wireless
Symposium (IWS), 2013 IEEE International. IEEE, 2013, pp. 1–4.
[32] Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements, Texas
Instruments, 2012, rev. E.
[33] MPU-9250 Product Specification, InvenSense, 2013, revision 1.0.
[34] MSP430x5xx and MSP430x6xx Family User’s Guide, Texas Instruments, 2008, rev. O.
[35] 2.4-GHz Bluetooth low energy and Proprietary System-on-Chip, Texas Instruments,
2013, rev. D.
[36] O. Kaltiokallio, H. Yi˘gitler, R. J¨antti, and N. Patwari, “Non-invasive respiration rate
monitoring using a single cots tx-rx pair,” in Information Processing in Sensor Networks,
IPSN-14 Proceedings of the 13th International Symposium on. IEEE, 2014, pp. 59–69.
[37] K. R. Barker, “Method of monitoring patient respiration and predicting apnea there-
from,” Dec. 28 1982, uS Patent 4,365,636.
[38] R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care system based on knit-
ted integrated sensors,” IEEE Transactions on Information Technology in Biomedicine,
vol. 9, no. 3, pp. 337–344, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔