|
References
Basak, J., De, R.K., Pal, S.K., 1998. Unsupervised feature selection using a neuro-fuzzy approach. Pattern Recognition Lett. 19, 997–1006.
Fisher, R., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188.
Hung Wen-Liang., Miin-Shen Yang., De-Hua Chen.,2008. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters 29 (2008) 1317–1325.
Hung Wen-Liang., De-Hua Chen.,Jenn-Hwai Yang.,2016.Weighting variables in Kohonen competitive learning algorithms, Journal of Applied Statistics, DOI:10.1080/02664763.2016.1168367.
Kim, D.W., Lee, K.H., Lee, D., 2004. A novel initialization for the fuzzy c-means algorithm for color clustering. Pattern Recognition Lett. 25, 227–237.
Modha, D.S., Spangler, W.S., 2003. Feature weighting in k-means clustering. Machine Learn. 52, 217–237.
Pal, S.K., De, R.K., Basak, J., 2000. Unsupervised feature evaluation: A neuro-fuzzy approach. IEEE Trans. Neural Networks 11, 366–376.
Wang, X.Z., Wang, Y.D., Wang, L.J., 2004. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Lett. 25, 1123–1132.
Yu, J., Cheng, Q.S., Huang, H.K., 2004. Analysis of the weighting exponent in the FCM. IEEE Trans. Systems Man Cybernet. 34, 634– 639.
Yu, J., Yang, M.S., 2005. Optimality test for generalized FCM and its application to parameter selection. IEEE Trans. Fuzzy Syst. 13, 164– 176.
Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr. 8, 338–353.
|