(3.237.178.91) 您好!臺灣時間:2021/03/07 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡孟儒
研究生(外文):Tsai, Meng-Ju
論文名稱:開發臨場穿透式電子顯微鏡之微機電製程加熱系統與四元化合物半導體之動態分析
論文名稱(外文):Development of In-Situ MEMS-Based Heating System for Dynamic Analysis of the Quaternary Compound Semiconductor in Transmission Electron Microscope
指導教授:陳福榮陳福榮引用關係
指導教授(外文):Chen, Fu-Rong
口試委員:曾繁根曾百亨
口試委員(外文):Tseng, Fan-GangTseng, Bae-Heng
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:臨場穿透式電子顯微鏡穿透式電子顯微鏡微機電系統動態分析快速熱退火
外文關鍵詞:In-situ TEM(Transmission electron Microscope)TEM(Transmission electron Microscope)MEMS(Microelectromechanical Systems)Dynamic AnalysisRapid thermal annealing(RTA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對穿透式電子顯微鏡臨場觀測的需求,開發以熱為刺激源的TEM樣品桿。相較於傳統熱爐式加熱樣品桿,升溫速率(100°C/sec)、降溫速率(0.1°C/sec)及熱飄移速率(82nm/sec),為了解決性能上的不足,利用MEMS技術製作加熱晶片,其微區加熱表現出的高性能,能夠快速升溫(15000°C/sec)及降溫(15000°C/sec),於短時間內達熱穩定,且大幅減少樣品因高溫而造成的熱飄移(0.5nm/sec),並利用四點探針即時回饋得到精準的控溫。加熱晶片製程需用到 a.光罩設計 b.黃光微影 c.反應離子蝕刻 d.電子束蒸鍍 e.濕蝕刻 f.化學氣相沈積 g.水平爐管 h.退火爐管。 且利用 i.原子力顯微鏡 及 j.N.K光學分析儀檢測膜厚。 接著用FIB製備TEM樣品,並利用油壓式機械手臂將樣品轉移至加熱晶片上。於穿透式電子顯微鏡內做快速熱退火硒化製程單一相CZTSe(Cu2ZnSnSe4)薄膜,因其在快速升溫過程中,可避開三元硒化物之二次相(Cu2SnSe3)的產生,並解析穿透式電子顯微鏡動態影像,再利用加熱晶片之快速降溫性能,將高溫介穩相淬火至常溫以便用能量色散X射線光譜-元素分佈分析動態元素分佈,以及解析高解析影像及快速傅立葉轉換轉換繞射圖解析結晶相。
The research is “Development of In-Situ MEMS-Based Heating System for Dynamic Analysis of the Quaternary Compound Semiconductor in Transmission Electron Microscope”. For this research of TEM in-situ observation, we develop the heating process perform in TEM by TEM heating holder. Instead of the heating by traditional resistance wires, the heating resource has implemented by MEMS technology to fabricate the micro heater.
The MEMS-Based micro heater has high performance in heating rapidly & cooling, settling time shortly and reducing significantly the thermal drift caused by heating & cooling. Then the four point resistance feedback is used to precisely control the temperature. The fabrication processes of MEMS-Based micro heater include photo lithography, LPCVD, PECVD, RIE(reactive ion etching), wet etching and E-Beam evaporation. After the MEMS process, N&K analyzer. AFM, SEM and Four-Point Probe were used to detect the MEMS-Based micro heater.
The analysis of solar cell absorption layers (Se/Cu/Sn/Zn/SLG) are prepared by sputter and E-Beam evaporation. After that, the FIB(focused ion beam) is used to prepare the TEM sample. In order to avoid the second phase deposition, RTA(rapid thermal annealing) process were performed in TEM, moreover it observes the high resolution video related to timeline and analysis by EDS(energy dispersive spectrometer) and DP(diffraction pattern).
Key words:In-situ TEM(Transmission electron Microscope)、TEM(Transmission electron Microscope)、MEMS(Microelectromechanical Systems)、Dynamic Analysis、Rapid thermal annealing(RTA)
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 顯微鏡的發展 1
1.1.1 光學顯微鏡的發展 1
1.1.2 電子顯微鏡的發展 3
1.1.3 掃描式電子顯微鏡 5
1.1.4 穿透式電子顯微鏡 7
1.2 研究動機與目的 8
第二章 文獻回顧 9
2.1 電子顯微鏡加熱載具 9
2.1.1 穿透式電子顯微鏡之加熱載具 10
2.1.2 微機電製程之微型加熱器 14
2.2 臨場加熱電子顯微鏡之分析 17
2.2.1 高溫臨場相變化之分析 17
2.2.2 臨場觀測奈米結構成核與成長 19
2.2.3 臨場觀測原子擴散與電遷移現象 25
2.3 CZTSe(Cu2ZnSnSe4)太陽能電池 28
2.3.1太陽能電池的發展 28
2.3.2 晶體結構 30
2.3.3 缺陷與參雜效果 31
2.3.4 Cu2ZnSnSe4硒化反應機制 33
第三章 載具開發與實驗方法 34
3.1 實驗大綱 34
3.2 製程設備 35
3.3 分析儀器 37
3.4 微型加熱晶片設計與製作 39
3.4.1 微型加熱晶片結構設計 39
3.4.2 光罩繪製與製作 40
3.4.3 黃光微影 41
3.4.4 微型加熱晶片製程流程 44
3.5 穿透式電子顯微鏡臨場觀測之加熱系統架設 47
3.5.1 設備與裝置組件 48
3.5.2 實驗步驟 48
第四章 結果與討論 50
4.1 加熱晶片 50
4.1.1 觀測視窗之膜厚控制 50
4.1.2 四點量測電阻即時控溫 55
4.1.3 熱飄移之量測 59
4.2 快速熱退火形成CZTSe於TEM下臨場觀測 61
4.2.1 Se/Cu/Zn/Sn/Si金屬疊層於TEM中快速熱退火 62
圖4.2-1 TEM中進行快速熱退火於不同溫度下之影像 62
4.2-2 於TEM熱退火過程中之成分分析 63
第五章 結論 64
第六章 參考文獻 65
1. 王文軒, 「發明與創新(學生版)」. 2007. 10.
2. 朱士維, 「光學顯微鏡技術的新進展」.
3. 章校鋒, 「清晰的奈米世界-初探電子顯微鏡」. 2006.
4. Hawkes, P.W., Ernst Ruska. Physics Today, 1990. 43(7): p. 84.
5. Wells, O.C., Scanning Electron Microscopy. Journal of Vacuum Science & Technology, 1965. 2(5): p. 285-.
6. 汪建民, 材料分析. 2001: p. 121-150.
7. In-situ heating holder. Hummingbird Scientific.
8. Hideaki, M. and N. Shigeru, Specimen heating and positioning device for an electron microscope. 1975, Google Patents.
9. Jones, J.S. and P.R. Swann, Specimen heating holder for electron microscopes. 1991, Google Patents.
10. Aoyama, T., et al., Electron microscope specimen holder. 1994, Google Patents.
11. DENSsolutions' EMheaterchips. DENSsolutions.
12. Allard, L.F., et al., A new MEMS‐based system for ultra‐high‐resolution imaging at elevated temperatures. Microscopy research and technique, 2009. 72(3): p. 208-215.
13. K. Nakajima, M.M., H. Niimi, T. Suzuki, N. Kikuchi, N.Erdman, and C.Nielsen, Applications of dynamic microstructure observation and chemical analysis with SEM-EDS. 2013.
14. Tsugio, I. and K. Hiziya, A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy, 1958. 6(1): p. 4-8.
15. Li, C.-M., et al., In situ TEM observation of the nucleation and growth of silver oxide nanoparticles. Micron, 2005. 36(1): p. 9-15.
16. Chiou, Y.C., Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy. 2006.
17. Zink, N., et al., In situ heating TEM study of onion-like WS2 and MoS2 nanostructures obtained via MOCVD. Chemistry of Materials, 2007. 20(1): p. 65-71.
18. 陳昶孝 and 李連忠, 2D Material Heterostructures : Synthesis and Applications. NANO COMMUNICATION, 2014. 21卷(NO3).
19. Meyer, M., et al., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures. Microelectronic Engineering, 2002. 64(1): p. 375-382.
20. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069.
21. 羅聖全, 電子顯微鏡試片製備技術總論. 工業材料雜誌, 2004. 206.
22. S. Das, GROWTH, FABRICATION AND CHARACTERIZ ATION OF Cu2ZnSn(SXSeX)4 PHOTOVOLTAIC ABSORBER AND THIN FILM HETEROJUNCTION SOLAR CELLS, South Carolina: unpublish, 2012.
23. S. Delbos, “Kesterite thin films for photovoltaics: a review,”EPJ Photovoltaics, p. 35004, 14 8 2012.
24. C. R. A. CATLOW, Z. X. GUO,M.MISKUFOVA,S.A.SHEVLIN,A. G. H. SMITH,A.A.SOKOL,A.WALSH,D.J.WILSON AND S. M. WOODLEY, “Advances in computational studies of energy materials,”Phil. Trans. R.Soc. A, pp. 3379-3456, 21 6 2010.
25. Parul Chawla, Son Singh and Shailesh Narain Sharma, “An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals,”Beilstein J. Nanotechnol. , pp. 1235-1244, 8 8 2014.
26. Chen S, Walsh A, Gong XG, Wei SH, “Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.,”Adv Mater. , pp. 1522-39, 20 5 2013.
27. 高千惠, “Cu2ZnSnSe4薄膜之快速硒化製程研究,”國立中山大學材料科學研究所碩士論文, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔