(3.238.7.202) 您好!臺灣時間:2021/03/04 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:庫瑪
研究生(外文):Kumar, Rakesh
論文名稱:在低溫下研究Pb/Si(111)表面Si原子沉積的早期階段:吸附,動態過程,擴散和操作
論文名稱(外文):Study of early stages of deposition of Si atoms at Pb/Si(111) surface at low temperature: Adsorption, dynamic processes, diffusion, and manipulation
指導教授:黃英碩黃英碩引用關係李志浩李志浩引用關係
指導教授(外文):Hwang, Ing-ShouhLee, Chih-Hao
口試委員:張嘉升蘇維彬莊天明唐述中
口試委員(外文):Chang, Chia-SengSu, Wei-BinChuang, Tien-MingTang, Shu-Jung
口試日期:2017-07-07
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:99
中文關鍵詞:吸附行為動力學屬性跳躍能量不可逆的聚集原子操縱熱行為
外文關鍵詞:Adsorption behaviorDynamics propertiesHopping energyIrreversible aggregationAtom manipulationThermal behaviorVT-STM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
我們使用了可變溫掃描穿隧電子顯微鏡(VT-STM)研究矽原子的吸附行為、矽原子 的動態特性以及在鉛/矽(111)表面上的矽原子之操控。本論文共分為三個部分。在 第一部分,探討了單個矽原子於低溫表面上的吸附狀態與位置。第二部分則討論了矽 原子的動態特性和穩定性。在第三部分,通過使用掃描穿隧電子顯微鏡之針尖,操作 吸附的矽原子沿著或跨越三聚體之直列來運動。 此外,矽二聚體的性質和動力學於此 論文中也有所探討。
在第一部分,研究了在低溫(〜125K)下鉛/矽(111)表面上單個矽原子的吸附。眾 所周知,在室溫下,矽(111)表面上的單層鉛表現出(1×1)結構。這種表面結構在 轉變溫度為270 K時會可逆地轉變為低對稱的(√7×√3)-鉛結構。在125 K時,我們 發現了吸附的矽原子是不會擴散,因此可以詳細檢查了其吸附位置。單個矽原子傾向 於出現在矽(111)基板的頂部位置(T1位點)附近。吸附的矽原子在高穿隧電壓差 條件下的電子空態和滿態的掃描穿隧電子顯微鏡圖像具有不同的外觀;然而,它們在 低穿隧電壓差下具有相同的外觀。原子解析的掃描穿隧電子顯微鏡圖像顯示吸附的矽 原子優先佔據T1A或T1B的位置處。表面上單個矽原子的吸附行為為(√7×√3)-鉛結 構中的鏡像對稱性破壞提供了有力的證據。
在第二部分,我們研究了升溫時矽原子的穩定性和動力學。我們發現了矽原子在高於 150K的溫度下開始在鉛三聚體內的T1A和T1B位置之間轉變。當溫度升至約160K以上 時,吸附的矽原子可以沿相同的三聚體直列躍遷到其它三聚體。低於〜170K,主導的 是相鄰三聚體間的短跳,但是溫度高於〜170K時,長跳占了主要部分。在160〜174K 的溫度下連續時間成像的分析,我們得出的矽原子擴散的活化能和前因子。此外,在
iii
高於〜170K的溫度下,單個矽原子到矽簇的不可逆聚集開始發生在相邊界或缺陷的部 位。在高於〜180K的溫度下,幾乎所有矽原子在表面上消失並聚集成簇,這可能對鉛 / 矽(111)表面上矽原子的外延生長機制有重要的意義。
本論文的最後部分中,我們使用掃描穿隧電子顯微鏡的針尖在〜125K處橫向操控了單 個矽原子。在這個樣品溫度下,矽吸附的原子不會擴散。使用掃描穿隧電子顯微鏡針 尖並通過採用單點I-Z能譜,我們可以操控矽原子使其沿著表面三聚體直列或跨過表面 三聚體直列移動。在同一個三聚體直列上,一個矽原子被帶往更接近另一個矽吸附原 子的位置。當形成矽二聚體時,其將在鉛覆蓋的表面上快速擴散,直到其被邊界或缺 陷捕獲。這項工作展示了可以使用原子操控方法來揭示一事實:僅用掃描穿隧電子顯 微鏡幾乎是不能觀察到最初期的原子表面動態過程。此外,原子操控揭示了矽吸附原 子在樣品表面上的真實原子位置,這解決了掃描穿隧電子顯微鏡圖像可能不能反映吸 附原子的真實位置的常見問題。
Si atoms adsorption behavior, Si atoms dynamic properties, and the manipulation of Si atoms on the Pb/Si(111) surface have been studied with variable-temperature scanning tunneling microscopy (VT-STM). This thesis has been divided into three parts. In the first part, the adsorption of single Si atoms and the adsorption sites on the surface at low temperature (LT) have been reported. The dynamic properties and stability of the Si atoms have been discussed in the second part of this thesis. In the third part, Si adatoms were manipulated either along or across the trimer row by using STM tip. Additionally, the nature and dynamics of Si dimer have been explored.
In the first part, the adsorption of single Si atoms on the Pb/Si(111) surface at low temperature (~125 K) has been studied. It is well known that at room temperature a monolayer Pb on Si(111) surface exhibits (1×1) structure. This surface structure transformed reversibly into a low- symmetry row-like (√7×√3)-Pb structure at a transition temperature ~270 K. At 125 K, the adsorbed Si atoms are found to be immobile and their adsorption sites were examined in details. Single Si atoms tend to appear near the on-top site (T1 site) of the Si(111) substrate. The adsorbed Si atoms have different appearance at empty- and filled-state STM images in high tunneling conditions; however, they have the same appearance at low tunneling conditions. The atomic-resolved STM images revealed that adsorbed Si atoms prefer to occupy either at T1A or T1B sites. The adsorption behavior of single Si atoms on the surface provided a strong evidence of breaking of mirror symmetry in the (√7×√3)-Pb structure.
In the second part, the stability and dynamics of Si atoms have been studied with increasing sample temperature. We have found that Si atoms started to switch between T1A and T1B sites inside a Pb trimer at the temperature higher than 150 K. When the temperature raised above
~160 K, the adsorbed Si atoms could hop to other trimers along the same trimer row. Below
i
~170 K, short hops to adjacent trimers dominated, but long hops dominated at temperature above ~170 K. The activation energy and prefactor for the Si atoms diffusion were derived through analysis of continuous-time imaging at temperature from 160 to 174 K. In addition, irreversible aggregation of single Si atoms into Si clusters started to occur at the phase boundaries or defective sites at temperature above ~170 K. At temperature above ~180 K, nearly all Si atoms disappeared on the surface and aggregated into clusters, which may have important implications on the atomic mechanism of epitaxial growth of Si on the Pb/Si(111) surface.
The lateral manipulation of single Si atoms was demonstrated at ~125 K using the tips of an STM and this study has been included in the last part of this thesis. At this sample temperature, Si adatoms are not mobile. STM tips were used to move Si adatoms either along or across the surface trimer rows by employing single-point I-Z spectroscopy. One Si adatom was brought closer to another Si adatom on the same trimer row. When a Si dimer was formed, it diffused rapidly on the Pb-covered surface until it was trapped by the domain boundaries or defect sites. This work demonstrates the prospective to use atomic manipulation methods to reveal the surface dynamic processes that hardly be observed with STM alone. In addition, the manipulation revealed the true atomic positions of Si adatoms on the sample surface, which solves a common problem that STM images may not reflect the real positions of adsorbed adatoms.
TABLE OF CONTENTS
Abstract ……………………………………….………………………………...…………..i
Dedication ……………………………………….………………………………………….v
Acknowledgment ..........................................vi
List of Figure …….…………..…………...…………………………………..……...……xi
List of Publications ………………………………………………………..…………..…xx
List of Abbreviations ……………………………………………………..…………..…xxi
Chapter
1. Introduction
1.1 General introduction …………………………………………………..1
1.2 Motivation …………………………………………………………….7
1.3 Thesis organization ………………………………………………….10
2. Instrumentation, Sample preparation and Different Phases of Pb/Si(111) Surface
2.1 Instruments …………………………………………………………….12
2.2 Principle of STM ……………………………………………………….14
2.3 Tip Preparation ………………………………………………………...15
2.4 Sample Preparation …………………………………………………….16
2.5 Si(111)-(7×7) surface …………………………………………………..17
2.6 Pb on Si(111) surface …………………………………………………..17
2.6.1 1/3 ML (√3×√3)-Pb phase ……………………………………19
2.6.2 1 ML (1×1)-Pb phase ………………………………………...20
2.6.3 1 ML (√7×√3)-Pb phase at low temperature …………………21
3. Adsorption of Si atoms and Atomic Structure of (√7×√3)-Pb Surface
3.1 Introduction ……………………………………………………………25
3.2 Si on Pb/Si(111) surface at low temperature (LT) ……………………26
3.3 Asymmetry of the Si atoms adsorbing near the T1A and T1B sites …….31
3.4 The Atomic Structure of Pb-(√7×√3) Surface based on Si adsorption
behavior …………………….………………………………………….38
3.5 Summary ……………………………………………………………….40
4. Dynamic Behavior of the Single Si atoms on Pb/Si(111) Surface
4.1 Introduction ……………………………………………………………42
4.2 Switching of Si atoms in a Pb-trimer sites …………………………….43
4.3 Hopping of single Si atoms at the (√7×√3)-Pb Surface ……………….45
4.4 The activation energy and a prefactor …………………………………49
4.5 Si atoms: Single displacement, double displacement and long
displacement …………………………………………………………...50
4.6 Hopping Mechanism of diffusion of Single Si atoms on the (√7×√3)-Pb
Surface …………………………………………………………………54
4.7 Irreversible transformation of Si atoms in to clusters ………………….55
4.8 Summary ……………………………………………………………….59
5. Manipulation of Si atoms on Pb/Si(111) Surface at LT
5.1 Introduction ……………………………………………………………60
5.2 Experimental …………………………………………………………...65
5.3 Si adatoms on the (√7×√3)-Pb surface …………………………………66
5.4 Lateral manipulation of Si adatoms …………………………………….69
5.5 Manipulation of Si adatoms to move along the trimer row ……………72
5.6 Manipulation of Si adatoms to move across the trimer row …………….76
5.7 Discussion ……………………………………………………………...78
5.8 Summary ……………………………………………………………….81
6. Conclusion and Future Work
6.1 General Conclusion ……………………………………………………83
6.2 Future Work ……..……………………………………….………….…85
Bibliography ………………………………………………………………………..87
1 R. P. Feynman, There is plenty of room at the bottom, Engineering and Science 23, 22 (1960).
2 J. D. Meindl, Q. Chen, and J. A. Davis, Limit on silicon nanoelectronics for terascale integration, Science 293, 2044-2049 (2001).
3 M. Schulz, The end of the road for silicon? Nature 399, 729-730 (1999).
4 D. Stievenard and B. Legrand, Silicon surface nano-oxidation using scanning probe microscopy, Prog. Surf. Sci. 81, 112-140 (2006).
5 K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction, Springer (2003).
6 C. J. Chen, Introduction to scanning tunneling microscopy, Oxford University Press (1993).
7 J. B. Hudson, Surface science an introduction, Butterworth-Heinemann (1992).
8 A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. E. Northrup, Reconstruction of the GaN(000-1) surface, Phys. Rev. Lett. 79, 3934 (1997).
9 A. R. Smith et al., Determination of Wurtzite GaN lattice polarity based on surface reconstruction, Appl. Phys. Lett. 72, 2114 (1998).
10 Q. Z. Xue et al., Atomistic investigation of various GaN(0001) phases on the 6H-SiC(0001) surface, Phys. Rev. B 59, 12604 (1999).
11 Hamad A. H. AL-Brithen, et al., Scanning tunneling microscopy and surface simulation of zinc-blend GaN(001) intrinsic 4x reconstruction: linear gallium tetramers?, Phys. Rev. Lett. 95, 146102 (2005).
12 R. M. Feenstra, S. Gaan, G. Meyer, and K. –H. Reider, Low-temperature tunneling spectroscopy of Ge(111) c(2x8) surfaces, Phys. Rev. B 71, 125316 (2005).
13 H. –F. Wang, P. Kruger, and J. Pollmann, Electronic structure of 1×1 GaN (0001) and GaN (000-1) surfaces, Phys. Rev. B 64, 035305 (2001).
14 T. Strasser, C. Solterbeck, F. Starrost, and W. Schattke, Valence-band photoemission from the GaN(000-1) surface, Phys. Rev. B 60, 11577 (1999).
15 D. Vogel, P. Kruger, and J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B 55, 12836 (1997).
16 B. J. Kowalski, et al., Electronic structure of GaN(000-1) surface, Surf. Sci. 548, 220 (2004).
17 S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light emitting diodes, Appl. Phys. Lett. 64, 1687 (1994).
18 A. L. Rosa and J. Neugebauer, First-principles calculations of the structural and electronic properties of clean GaN(0001) surfaces, Phys. Rev. B 73, 205346 (2006).
19 D. M. Eigler, and E. K. Schweize, Positioning single atoms with a scanning tunneling microscope, Nature 344, 524- 526 (1990).
20 S. –W. Hla, L. Bartels, G. Meyer and K. –H. Reider, Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering, Phys. Rev. Lett. 85, 2777 (2000).
21 V. Iancu and S. –W. Hla, Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules, Proc. Nat. Aca. Sci. 103, 3718 (2006).
22 S. –W. Hla, K. –F. Braun, V. Iancu, and A. Deshpande, Single-Atom Extraction by
Scanning Tunneling Microscope Tip Crash and Nanoscale Surface Engineering, Nano Lett. 4, 1997-2001 (2004).
23 S. –W. Hla, Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology, J. Vac. Sci. & Tech. B 23, 1251 (2005).
24 H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Quantum mirages formed by coherent projection of electronic structure, Nature 403, 512 (2000).
25 G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface Science, 126, 236 (1983).
26 G. Binning, C. F. Quate, and Ch. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986).
27 C. B. Duke, Surface science 1964-2003, J. Vac. Sci. Technol. A 21, S34-S35 (2003).
28 A. Yoshimori, Overview of surface science-structures, dynamical 
 processes and microscopies with atomic resolution, Vacuum 65, 223 (2002).
29 J. A. Venables, G. D. T. Spiller and M. Hanbücken, Nucleation and growth of thin films, Rep. Prog. Phys. 47, 399 (1984).
30 J. A. Venables, Rate equation approaches to thin film nucleation kinetics, Philos. Mag. 27, 697 (1973).
31 J. A. Venables, Introduction to surface and thin film processes, Cambridge University Press, Cambridge, 2000.
32 H. Brune, Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf.
Sci. Rep. 31, 4-6, 125 (1998).
33 B. Voigtländer and A. Zinner, Surfactant-mediated epitaxy of Ge on Si(111): The role of kinetics and characterization of the Ge layers, J. Vac. Sci. Technol. A 12, 1932 (1994).
34 B. Voigtländer and A. Zinner, Influence of surfactants on the growth of-kinetics of Si on Si(111), Surf. Sci. Lett. 292, L775 (1993).
35 B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Modification of growth kinetics in surfactant-mediated epitaxy, Phys. Rev. B 51, 7583 (1995).
36 M. Kawamura, N. Paul, V. Cherepanov, and B. Voigtländer, Nanowires and Nanorings at the atomic level, Phys. Rev. Lett. 91, 096102 (2003).
37 G. Meyer, B. Voigtländer, and N. M. Amer, Scanning tunneling microscopy of surfactantmediated epitaxy of Ge on Si(111): strain relief mechanism and growth kinetics, Surf. Sci. 274, L541 (1992).
38 I. –S. Hwang, T. –C. Chang, and T. T. Tsong, Exchange-barrier effects on nucleation and growth of Surfactant-mediated epitaxy, Phys. Rev. Lett. 80, 4229 (1998).
39 I. –S. Hwang, T. –C. Chang, and T. T. Tsong, Growth mechanism and morphology of Ge on Pb covered Si(111) surfaces, Surf. Sci. 410, L741 (1998).
40 T. –C. Chang, I. –S. Hwang, and T. T. Tsong, Direct observation of reaction-limited aggregation on semiconductor surfaces, Phys. Rev. Lett. 83 1191 (1999).
41 I. –S. Hwang, T. –C. Chang, and T. T. Tsong, Nucleation and growth of Ge at Pb/Si(111) surfaces: reaction-limited aggregation, Jpn. J. Appl. Phys., 39 4100 (2000).
42 T. –C. Chang, K. Chatterjee, S. –H. Chang, Y. –H. Lee, and I. –S. Hwang, Nucleation and growth of Si on Pb monolayer covered Si(111) surfaces, Surf. Sci. 605, 1249 (2011).
43 J. Beben, I. –S. Hwang, T. –C. Chang, and T. T. Tsong, Model for surfactant-mediated growth of Ge on Pb-covered Si(111), Phys. Rev. B 63, 033304 (2000).
44 M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Novel strain-induced defect in thin film molecular-beam epitaxy layers, Phys. Rev. Lett. 63, 1826 (1989).
45 M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Surfactant in epitaxial growth, Phys. Rev. Lett., 63, 632 (1989).
46 M. Copel, M. C. Reuter, M. Horn-von Hoegen, and R. M. Tromp, Influence of surfactants in Ge and Si epitaxy on Si(100), Phys. Rev. B 42, 11682 (1990).
47 M. Horn-von Hoegen, F. K. LeGoues, M. Copel, M. C. Reuter, and R. M. Tromp, Defect self-annihilation in surfactant-mediated epitaxial growth, Phys. Rev. Lett. 67, 1130 (1991).
48 M. Horn-von Hoegen, M. Copel, J. C. Tsang, M. C. Reuter, and R. M. Tromp, Surfactant-mediated growth of Ge on Si(111), Phys. Rev. B 50, 10811 (1994).
49 Th. Schmidt, R. Kröger, T. Clausen, and J. Falta, Surfactant-mediated epitaxy of Ge on Si(111): Beyond the surface, Appl. Phys. Lett. 86, 111910 (2005).
50 J. Falta, M. Copel, F. K. LeGoues, and R. M. Tromp, Surfactant coverage and epitaxy of Ge on Ga-terminated Si(111), Appl. Phys. Lett. 62, 2962 (1993).
51 M. Horn-von Hoegen, J. Falta, M. Copel, and R. M. Tromp, Surfactant in Si(111) homoepitaxy, Appl. Phys. Lett. 66, 487 (1995).
52 R. M. Tromp and M. C. Rueter, Local dimer exchange in surfactant-mediated epitaxial growth, Phys. Rev. Lett. 68, 954 (1992).
53 S. Esch, M. Hohage, T. Michely, and G. Comsa, Origin of oxygen induced layer-by-layer growth in homoepitaxy on Pt(111), Phys. Rev. Lett. 72, 518 (1994).
54 J. Tersoff, A. W. Denier van der Gon, and R. M. Tromp, Critical island size for layer-layer growth, Phys. Rev. Lett. 72, 266 (1994).
55 J. Vrijmoeth, H. A. van der Vegt, J. A. Meyer, E. Vlieg, and R. J. Behm, Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects, Phys. Rev. Lett. 72, 3843 (1994).
56 S. Iwanari and K. Takayanagi, Surfactant epitaxy of Si on Si(111) surface mediated by a Sn layer I. Reflection electron microscope observation of the growth with and without a Sn layer mediate the step flow, J. Cryst. Growth 119, 229 (1992).
57 T. Schmidt. J. Falta, G. Materlik, J. Zeysing, G. Falkenberg, and R. L. Johnson, Bi: Perfect surfactant for Ge growth on Si(111)?, Appl. Phys. Lett. 74, 1391 (1999).
58 N. Grandjean, J. Massies, and V. H. Etgens, Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers, Phys. Rev. Lett. 69, 796 (1992).
59 G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa, Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth, Phys. Rev. Lett. 71, 895 (1993).
60 W. F. Egelhoff Jr., P. J. Chen, C. J. Powell, M. D. Stiles, and R. D. McMichael, Growth of giant magnetoresistance spin valve using indium as a surfactant, J. Appl. Phys. 79, 2491 (1996).
61 K. Schroeder, B. Engels, P. Richard, and S. Blügel, Reexchange controlled diffusion in surfactant-mediated epitaxial growth: Si on As-terminated Si(111), Phys. Rev. Lett. 80, 2873 (1998).
62 E. Tournié, N. Grandjean, A. Trampert, J. Massies, and K. H. Ploog, Surfactant-mediated molecular beam epitaxy of III-V strained-layer heterostructure, J. Cryst. Growth 150, 460 (1995).
63 D. Kandel and E. Kaxiras, Surfactant mediated Crystal growth of semiconductor, Phys. Rev. Lett. 75, 2742 (1995).
64 O. D. Dubon, P. G. Evans, J. F. Chervinsky, F. Spaepen, M. J. Aziz, and J. A. Golovchenko, Low-temperature Si(111) homoepitaxy and doping mediated by a monolayer of Pb, MRS.
Proc. 570, 45 (1999).
65 P. G. Evans, O. D. Dubon, J. F. Chervinsky, F. Spaepen, J. A. Golovchenko, Lowtemperature homoepitaxial growth on Si(111) through a Pb monolayer, Appl. Phys. Lett. 73 3120 (1998).
66 J. Massies and N. Grandjean, Surfactant effect on the surface diffusion length in epitaxial growth, Phys. Rev. B 48, 8502 (1993).
67 J. Wu, B. –G. Liu, Z. Zhang, and E. G. Wang, Reaction limited aggregation in surfactantmediated epitaxy, Phys. Rev. B 61, 13212 (2000).
68 L. –C. Wei and C. –S. Su, Low temperature homoepitaxial growth of high-miscut Si(111) mediated by this overlayer of Pb, Appl. Phys. Lett. 75, 2954 (1999).
69 K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Structure analysis of Si(111)-(7×7) reconstructed surface by transmission electron diffraction, Surf. Sci. 164, 367-392 (1985).
70 P. Bak, Commensurate phases, incommensurate phases and the devil’s staircase, Rep. Prog.
Phys. 45, 587 (1982).
71 J. Villain, Commensurate-incommensurate transition of krypton monolayers on graphite: A low temperature theory, Surf. Sci. 97, 219 (1980).
72 J. Villain, Ordering in Strongly Fluctuating Condensed Matter Systems p221, ed T Riste, New York, Plenum, 1980.
73 G. L. Lay, J. Peretti, M. Hanbucken, and W. S. Yang, Surface spectroscopy studies of Pb monolayers on Si(111), Surf. Sci. 204, 57 (1988).
74 R. W. Olesinki and G. J. Abbaschian, The Pb-Si (Lead-Silicon) system, Bull. Alloy Phase Diagrams 5, 271 (1984).
75 G. Le Lay, M. Abraham, A. Kahn, K. Hricovini, J. E. Bonnet, Abrupt metal-semiconductor interfaces, Phys. Scr. T, 35, 261 (1991).
76 P. J. Estrup and J. Morrison, Studies of monolayers of lead and tin on Si(111) surfaces, Surf. Sci. 2, 465 (1964).
77 E. Ganz, F. Xiong, I. –S. Hwang and J. Golovchenko, Submonolayer phases of Pb on Si(111), Phys. Rev. B 43, 7316 (1991).
78 E. Ganz, I. –S. Hwang, F. Xiong, S. K. Theiss and J. Golovchenko, Growth and morphology of Pb on Si(111), Surf. Sci. 257, 259 (1991).
79 M. Saitoh, K. Oura, K. Asano, F. Shoji and T. Hanawa, Low energy ion scattering study of adsorption and desorption processes of Pb on Si(111) surfaces, Surf. Sci. 154, 2-3, 394 (1985).
80 L. Seehofer, D. Daboul, G. Falkenberg, and R. L. Johnson, STM study of the incommensurate structures of Pb on Ge(111) and Si(111) surfaces, Surf. Sci. 307-309, 698 (1994).
81 M. Wemmenhove and T. Hibman, Structure and coverage of epitaxial Pb-layers on Si(111)-(7×7), Surf. Sci. 287-288, 925 (1993).
82 H. H. Weitering, D. R. Heslinga and T. Hibma, Structure and growth of epitaxial Pb on Si(111), Phys. Rev. B 45, 5991 (1992).
83 D. A. Steigerwald, I. Jacob, and W. F. Egelhoff Jr., Structural study of the epitaxial growth of fcc-Fe films, sandwiches, and superlattices on Cu(100), Surf. Sci. 202, 472 (1988).
84 L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, Structural study of the closepacked two-dimensional phases of Pb on Ge(111) and Si(111), Phys. Rev. B 51, 13503 (1995).
85 S. Stepanovsky, M. Yakes, V. Yeh, M. Hupalo, and M. Tringides, The dense α√3×√3 Pb/Si(111) phase: A comparative STM and SPA-LEED study of ordering, phase transitions and interaction, Surf. Sci. 600 (7),1417 (2006).
86 C. Kumpf, O. Bunk, Jan H. Zeysing, M. M. Nielsen, M. Nielsen, R. L. Johnson, and R. Feidenhans, Structural study of the commensurate-incommensurate low-temperature phase transition of Pb on Si(111), Surf. Sci. 448, 2-3, L213 (2000).
87 O. Custance, J. M. Gomez-Rodriguez, A. M. Baro, L. Jure, P. Mallet, and J. –Y. Veuillen, Low-temperature phases of Pb/Si(111), Surf. Sci., 482-485, 1399 (2001).
88 C. J. Chen, Introduction to scanning tunneling microscopy, Oxford University Press (1993).
89 S. –W. Hla, K. –F. Braun, V. Iancu, and A. Deshpande, Single atoms extraction by scanning tunneling microscopy tip crash and nanoscale surface engineering, Nano Lett. 4 1997 (2004).
90 G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, 7×7 Reconstruction on Si111) resolved in real space, Phys. Rev. Lett. 50, 120 (1983).
91 G. Meyer, A simple low temperature ultrahigh vacuum scanning tunneling microscope capable of atomic manipulation, Rev. Sci. Instrum. 67, 8 (1996).
92 R. A. Wolkow, A variable temperature scanning tunneling microscope for use in ultrahigh vacuum, Rev. Sci. Instrum. 63, 9 (1992).
93 M. Copel, M. C. Reuter, E. Haxiras and R. M. Tromp, Surfactant in epitaxial growth, Phys.
Rev. Lett. 63, 632 (1989).
94 D. Kandal, and E. Kaxiras, Surfactant mediated crystal growth of semiconductors, Phys. Rev. Lett. 75, 2742 (1995).
95 J. Tersoff and D. R. Hamann, Theory of scanning tunneling microscope, Phys. Rev. B 31, 805 (1985).
96 H. Brune, Microscopic view of epitaxial growth: Nucleation and aggregation, Surf. Sci.
Rep. 31, 121 (1998).
97 K. Horikoshi, X. Tong, T. Nagao, and S. Hasegawa, Structural phase transitions of Pbadsorbed Si(111) surfaces at low temperatures, Phys. Rev. B 60, 13287 (1999).
98 J. Slezák, P. Mutombo and V. Cháb, STM study of a Pb/Si(111) interface at room temperature and low temperature, Phys. Rev. B 60, 13328 (1998).
99 I. –S. Hwang, S. –H. Chang, C. –K. Fang, L. –J. Chen and T. T. Tsong, Observation of finite-size effects on a structural phase transition of 2D nanoislands, Phys. Rev. Lett. 93, 106101 (2004).
100 I. –S. Hwang, C. –K. Fang, and S. –H. Chang, Effect of boundaries and point defects on energetics of domain walls, Phys. Rev. B 83, 134119 (2011).
101 O. Custance, I. Brihuega, J. –Y. Veuillen, J. M. Gomez-Rodriguez, and A. M. Baro, STM study of dynamical effect on submonolayer phases of Pb/Si(111), Surf. Sci. 482-485, 878 (2001).
102 J. M. Gomez-Rodriguez, J. –Y. Veuillen, and R. C. Cinti, Scanning tunneling microscopy study of the Si(111)-(√3×√3)-Pb mosaic phase, Surf. Sci. 377-379, 45 (1997).
103 J. Slezák, P. Mutombo, and V. Cháb, Temperature study of phase coexistence in the system Pb on an Si(111) surface, Surf. Sci. 454-456, 584 (2000).
104 I. –S. Hwang, R. Martinez, C. Liu and J. A. Golovchenko, Soft incommensurate reconstruction on Pb/Si(111): structure, stress modulation, and phase transition, Phys. Rev.
B 51, 10193 (1995).
105 Y. –H. Lee, K. Chatterjee, C. –K. Fang, S. –H. Chang, I. –P. Hong, T. –C. Chang, and I. – S. Hwang, Nucleation and growth mechanism of a covalent material: magic clusters and chemical reactions, arXiv:1501.03934v1.
106 D. Nakamura, J. Yuhara, and K. Morita, Self-recovery of monolayer Pb adsorbates on the Si(111)-1×1-Pb surface under ion irradiation at room temperature, Surf. Sci. 425, 174 (1999).
107 E. Ganz, I. –S. Hwang, F. Xiong, S. K. Theiss, and J. A. Golovchenko, Growth and morphology of Pb on Si(111), Surf. Sci. 257, 259 (1991).
108 E. Ganz, F. Xiong, I. –S. Hwang, and J. A. Golovchenko, Submonolayer phases of Pb on Si(111), Phys. Rev. B 43, 7316 (1991).
109 F. Xiong, E. Ganz, J. A. Golovchenko, and F. Spaepen, In situ RBS and channeling study of molecular beam epitaxial growth of metals and semiconductors on semiconductor, Nucl. Instrum. Method Phys. Rev. B 56, 780 (1991).
110 M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Novel strain-induced defect in thin molecular-beam epitaxy layers, Phys. Rev. Lett. 63, 1826 (1989).
111 S. Brochard, E. Artacho, O. Custance, I. Brihuega, A. M. Baró, J. M. Soler, and J. M. Gómez-Rodríguez, Ab initio calculation and scanning tunneling microscopy experiments of the Si(111)-(√7×√3)-Pb, Phys. Rev. B 66, 205403 (2002).
112 P. Cudazzo, G. Profeta, and A. Continenza, Low temperature phases of Pb/Si(111) and related surfaces, Surf. Sci. 602, 747 (2008).
113 W. H. Choi, K. S. Kim, and H. W. Yeom, High-resolution core-level photoemission study of dense Pb overlayers on Si(111), Phys. Rev. B 78, 195425 (2008).
114 W. H. Choi, H. Koh, E. Rotenberg, and H. W. Yeom, Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission, Phys. Rev. B 75, 075329 (2007).
115 C. –H. Hsu, F. –C. Chuang, M. A. Albao, and V. Yeh, Electronic structure of the Pb/Si(111)-(√7×√3) surface reconstruction: A first-principle study, Phys. Rev. B 81, 033407 (2010).
116 T. –L. Chan, C. Z. Wang, M. Hupalo, M. C. Tringides, Z. –Y. Lu, and K. M. Ho, Firstprinciple studies of structures and stabilities of Pb/Si(111), Phys. Rev. B 68, 045410 (2003).
117 J. Slezák, P Mutombo, and V. Cháb, STM study of a Pb/Si(111) interface at room temperature and low temperature, Phys. Rev. B 60, 13328 (1999).
118 L. D. Landau and E. M. Lifshitz, Statistical Physics, (Addison-Welsey, New York, USA, 1969).
119 T. Sato, S. –I. Kitamura, and M. Iwatsuki, Initial adsorption process of Si atoms on an Si(111)-(7´7) surface studied by scanning tunneling microscopy, Surf. Sci. 445, 130 (2000).
120 M. Hupalo, J. Schmalian, and M. C. Tringides, “Devil Staircase” in Pb/Si(111) ordered Phases, Phys. Rev. Lett. 90, 216106 (2003).
121 M. Yakes, V. Yeh, M. Hupalo, and M. C. Tringides, Self-organization at finite temperatures of the devil’s staircase in Pb/Si(111), Phys. Rev. B 69, 224103 (2004).
122 G. Ehrlich and F. G. Hudda, Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44, 1039 (1966).
123 G. Ehrlich, Atomic displacement in one- and two-dimensional diffusion, J. Chem. Phys. 44, 1050 (1966).
124 T. T. Tsong, Experimental studies of the behavior of single adsorbed atoms on solid surfaces, Rep. Prog. Phys. 51, 759 (1988).
125 E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko, Direct measurement of diffusion by hot tunneling microscopy: activation energy, anisotropy, and long jumps, Phys. Rev. Lett. 68, 1567 (1992).
126 R. L. Lo, I. S. Hwang, M. S. Ho, and T. T. Tsong, Diffusion of single hydrogen atoms on Si(111)-(7×7), Phys. Rev. Lett. 80, 5584 (1998).
127 T. Hitosugi, Y. Suwa, S. Matsuura, S. Heike, T. Onogi, S. Watanabe, T. Hasegawa, K. Kitazawa, and T. Hashizume, Direct observation of one-dimensional Ga-atom migration on a Si(100)-(2×1)-H surface: a local probe of adsorption energy variation, Phys. Rev. Lett. 83, 4116 (1999).
128 G. L. Kellog, Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces, Surf. Sci. Rep. 21, 88 (1994).
129 J. D. Wrigley and G. Ehrlich, Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett. 44, 661 (1980).
130 C. Chen and T. T. Tsong, Displacement distribution and atomic jump direction of Ir atoms on the Ir(001) surface, Phys. Rev. Lett. 64, 3147 (1990).
131 T. R. Linderoth, S. Horch, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Surface diffusion of Pt on Pt)110): Arrhenius behavior of long jumps, Phys. Rev. Lett. 78, 4978 (1997).
132 J. Ferrón, R. Miranda, and J. J. de Miguel, Atomic jumps during surface diffusion, Phys.
Rev. B 79, 245407 (2009).
133 G. Antczak and G. Ehrlich, Long jump rate in surface diffusion: W on W(110), Phys. Rev. Lett. 92, 166105 (2004).
134 D. C. Senft and G. Ehrlich, Long jumps in surface diffusion: one-dimensional migration of isolated adatoms, Phys. Rev. Lett. 74, 294 (1995).
135 S. C. Wang, J. D. Wrigley, and G. Ehrlich, Atomic jump lengths in surface diffusion: rhenium, molybdenum, iridium, and rhodium on tungsten (211), J. Chem. Phys. 91, 5087 (1989).
136 G. Antczak and G. Ehrlich, Long jumps in diffusion of iridium on W(110), Phys. Rev. B 71, 115422 (2005).
137 M. Schunack, T. Linderoth, F. Rosei, E. Lægsgaard, I. Stensgaard, and F. Besenbacher, Long jumps in the surface diffusion of large molecules, Phys. Rev. Lett. 88 156102 (2002).
138 G. Antczak and G. Ehrlich, Jump processes in surface diffusion, Surf. Sci. 62, 39 (2007).
139 M. Petty, M. Bryce, and G. Bloor, Introduction to Molecular Electronics, (ed)1995 (Landon: Oxford University Press).
140 D. M. Eigler, C. P. Lutz, and W. E. Rudge, An atomic switch realized with the scanning tunneling microscope, Nature 352, 600 (1991).
141 R. Bennewitz, J. N. Crain, A. Kirakosian, J. L. Lin, J. L. McChesney, D. Y. Petrovykh, and
F. J. Himpsel, Atomic Scale memory at a silicon surface, Nanotechnology 13, 499 (2002).
142 T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono, Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers, Adv. Mater. 24, 252 (2012).
143 A. Deshpande, H. Yildrim, A. Kara, D. P. Acharya, J. Vaughn, T. S. Rahman, and S. –W Hla, Atom by atom extraction by controlling STM tip-cluster interaction, Phys. Rev. Lett.
98, 028304 (2007).
144 D. P. Acharya, K. Clark, J. Vaughn, and S. –W Hla, Design and construction of UHV-LTSTM system for atom manipulation for MBE grown semiconductor surfaces, Proceeding of the Sixth IEEE conference on Nanotechnology, Cincinnati, OH, USA Vol. 2, Issue 1720, 607 (2006).
145 L. Bartels, G. Meyer, and K. –H. Rieder, Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip, Phys. Rev. Lett. 79, 697 (1997).
146 B. Neu, G. Meyer, and K. –H. Rieder, Controlled vertical and lateral manipulation of single atoms and molecules with the scanning tunneling microscope, Mod. Phys. Lett. B 09, 963 (1995).
147 G. V. Nazin, X. H. Qiu, and W. Ho, Atomic engineering of photon emission with a scanning tunneling microscope, Phys. Rev. Lett. 90, 216110 (2003).
148 A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger, Current-driven spin dynamics of artificially constructed quantum magnets, Science 339, 55 (2013).
149 S. –W. Hla and K. H. Rieder, STM control of chemical reaction: single molecule synthesis, Annu. Rev. Phys. Chem. 54, 307 (2003).
150 S. –W. Hla, Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology, J. Vac. Sci. Technol. B 23, 1251 (2005).
151 G. Meyer, L. Bartels, and K. –H. Rieder, Atom manipulation with the scanning tunneling microscope: nanostructuring and femtochemistry, Superlattices and Microstructures 25, 463 (1999).
152 D. M. Eigler and E. K. Schweitzer, Positioning single atoms with scanning tunneling microscope, Nature 344, 524 (1990).
153 N. Nilius, T. M. Wallis, and W. Ho, Development of one-dimensional band structure in artificial gold chains, Science 297, 1853 (2002).
154 G. Dujardin, A. Mayne, O. Robert, F. Rose, C. Jaochim, and H. Tang, Vertical manipulation of individual atoms by a direct STM tip-surface contact on Ge(111), Phys. Rev. Lett. 80, 3085 (1998).
155 D. Kitchen, A. Richardella, J. M. Tang, M. E. Flatté and A. Yazdani, Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interaction, Nature 442, 436 (2006).
156 L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science 251, 4998 (1991).
157 G. Meyer, B. Neu, and K.-H. Rieder, Controlled lateral manipulation of single molecules with the scanning tunneling microscope, Appl. Phys. A 60, 343 (1995).
158 I. –W. Lyo and P. Avouris, Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM, Science, 253, 173 (1991).
159 Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez, and O. Custance, Mechanism for room-temperature single-atom lateral manipulation on semiconductors using dynamic force microscopy, Phys. Rev. Lett. 98, 106104 (2007).
160 J. A. Stroscio and W. J. Kaiser, Scanning Tunneling Microscopy, Methods of Experimental Physics Vol. 27 (Academic Press, 1993).
161 J. A. Stroscio and D. M. Eigler, Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319 (1991).
162 C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, (2008).
163 J. Yang, C. Nacci, J. Martínez-Blanco, K. Kanisawa, and S. Föisch, Vertical manipulation of native adatoms on the InAs(111)A surface, J. Phys. Condens. Matter 24, 354008 (2012).
164 S. –W. Hla, Atom-by-atom assembly, Rep. Prog. Phys. 77, 056502 (2014).
165 S. –W. Hla, K. F. Braun, B. Wassermann, and K. –H. Rieder, Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy, Phys. Rev. Lett. 93, 208302 (2004).
166 S. –W. Hla, K. F. Braun, and K. –H. Rieder, Single-atom manipulation mechanism during a quantum corral construction, Phys. Rev. B 67, 201402 (2003).
167 B. Schuler, Y. Zhang, S. Collazos, S. Fatayer, G. Meyer, D. Pérez, E. Guitián, M. R. Harper, J. D. Kushnerick, D. Peña and L. Gross, Characterization aliphatic moieties in hydrocarbons with atomic force microscopy, Chem. Sci. 8, 2315 (2017).
168 I. Swart, T. Sonnleitner, J. Niedenführ, and J. Repp, Controlled lateral manipulation of molecules on insulating films by STM, Nano Lett. 12 (2), 1070 (2012).
169 B. Calmettes, L. Vernisse, O. Guillermet, Y. Benjalal, X. Bouju, C. Coudretb and R. Coratger, Observation and manipulation of hexa-adamantyl-hexa-benzocoronene molecules by low temperature scanning tunneling microscopy, Phys. Chem. Chem. Phys.
16, 22903 (2014).
170 J. Bamidele, S. H. Lee, Y. Kinoshita, R. Turansky, Y. Naitoh, Y. J. Li, Y. Sugawara, I. Stich, and L. Kantorovich, Vertical atomic manipulation with dynamic atomic-force microscopy without change via a multi-step mechanism, Nat. Commun. 5, 4476 (2014).
171 N. Pavliček and L. Gross, Generation, manipulation and characterization of molecules by atomic force microscopy, Nat. Rev. Chem. 1, 0005 (2017).
172 T. Hynninen, G. Cabailh, A. S. Foter, and C. Barth, Defect mediated manipulation of nanoclusters on an insulator, Scientific Reports 3, 1270 (2013).
173 S. Torbrügge, O. Custance, S. Morita, and M. Reichling, Manipulation of individual water molecules on CeO2(111), J. Phys. Cond. Matt. 24, 084010 (2012).
174 B. Enkhtaivan and A. Oshiyama, Atomic force microscope manipulation of Ag atom on the Si(111) surface, Phys. Rev. B 95, 035309 (2017).
175 Y. Hasegawa and Ph. Avouris, Manipulation of the reconstruction of the Au(111) surface with the STM, Science 258, 1763 (1992).
176 O. Custance, R. Perez, and S. Morita, Atomic force microscopy as a tool for atom manipulation, Nat. Nanotechnol. 4, 803 (2009).
177 Q. Li, S. Yamazaki, T. Eguchi, Y. Hasegawa, H. Kim, S. –J. Kahng, J. F. Jia and Q. K. Xue, Adsorption, manipulation and self-assembling of TBrPP-Co molecules on a Ag/Si(111) surface by scanning tunneling microscopy, Nanotechnology 19, 465707 (2009).
178 N. Oyabu, O. Custance, I. Yi, Y. Sugawara, and S. Morita, Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy, Phys. Rev. Lett. 90, 176102 (2003).
179 Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, Ó. Custance, and S. Morita, Atom inlays performed at room temperature using atomic force microscopy, Nat. Mat. 4, 156 (2005).
180 Y. Sugimoto, P. Pou, Ó. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Complex patterning by vertical interchange atom manipulation using atomic force microscopy, Science 322, 413 (2008).
181 Y. Sugimoto, A. Yurtsever, M. Abe, S. Morita, M. Ondráček, P. Pou, R. Pérez, and P. Jelínek, Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy, ACS Nano 7, 7370 (2013).
182 Y. Sugimoto, A. Yurtsever, N. Hirayama, M. Abe, and S. Morita, Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy, Nat. Commun. 5, 4360 (2014).
183 R. Kumar, C. –K. Fang, C. –H. Lee, and I. –S. Hwang, Adsorption and dynamics of Si atoms at the monolayer Pb/Si(111) surface, Phys. Rev. B 95, 254311 (2017).
184 I. –S. Hwang, S. –H. Chang, C. –K. Fang, L. –J. Chen, and T. T. Tsong, Probing dynamics of a phase transition of two-dimensional nano-domains with STM imaging and manipulation, Surf. Sci. Lett. 572, L331 (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔