跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡協志
研究生(外文):TSAI,SIE-JHIH
論文名稱:不同燃料於重組器內盤管汽化研究分析
論文名稱(外文):Evaporation Research and Analysis of Different Fuels in Steam Reformer
指導教授:郭振坤
指導教授(外文):KUO,JENN-KUN
口試委員:郭振坤黃崇能方得華蔡宇洲
口試日期:2017-01-16
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:甲醇甲醇水乙醇氫氣蒸發器重組器
外文關鍵詞:methanolmethanol-waterethanolhydrogenevaporatorsteam reformer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文以數值模擬的方式探討不同燃料在重組器之蒸發器盤管的蒸發變化之研究分析。利用計算流體力學(Computational Fluid Dynamics,簡稱CFD)的數值分析,進行模擬研究及探討複雜的物理變化。本研究將對甲醇水比例分為甲醇占50%水為50%、甲醇占62%水為38%、甲醇占75%水為25%、甲醇占100%與乙醇占100%五種燃料在相同條件熱源和進料壓力條件下進行重組器之蒸發器盤管汽化模擬研究與分析。探討燃料於蒸發器盤管內部流場的速度、出口溫度、蒸發汽化的變化情形。
模擬結果顯示各燃料在常溫下之速度場呈現等速度狀態,而加入溫度場後,因燃料蒸發的變化,導致出口端速度呈現加速狀態。研究結果亦顯示燃料出口端的溫度甲醇水(50%:50%)為473K、甲醇水(62%:38%)為515K、甲醇水(75%:25%)為547K、甲醇(100%)為609 K與乙醇(100%)為713K,在蒸發器盤管內部的蒸發情形顯示,可以得知乙醇的蒸發速率優於其它四種燃料,其在進入盤管總長度為1300mm之距離入口端543mm處後達到完全汽化,而甲醇(100%)、甲醇水(75%:25%)、甲醇水(62%:38%)、甲醇水(50%:50%)則分別在距離盤管入口823mm、983mm、1023mm、1063mm處才完全達到汽化。根據文獻回顧得知燃料蒸發率越高,產氫效率也會提升,由此結果顯示出乙醇(100%)具有較高的產氫效率。而這些研究結果可作為設計蒸發器盤管之重要依據。

In this paper, the evaporation of different fuel in the evaporator coil of the reformer was studied by numerical simulation. Numerical analysis using computational fluid dynamics (CFD), conducted simulation studies and explored complex physical phenomenon. In this study, the ratio of methanol-water is 50% for methanol and 50% for water、62% for methanol and 38% for water、75% for methanol and 25% for water、100% of methanol、100% of ethanol. The vaporization simulation studies of five kinds of fuels under the same heat source and the same feed pressure. Discussing of velocity, outlet temperature and evaporative vaporization of different fuel in the evaporator coil were analyzed.
The simulation results show that the velocity field of the fuel at the normal temperature shows the same speed. After adding the temperature field, the velocity of the outlet is accelerated due to the change of evaporation. The results also shows that the temperature of the methanol-water (50%: 50%) at 473K, the methanol water (62%: 38%) at 515K, the methanol water (75%: 25%) at 547K and the methanol (100%) at 609 K and ethanol (100%) were at 713K. Evaporation in the evaporator shows that the evaporation rate of ethanol is superior to that of other fuels, ethanol in the coil length of 1300mm, 543mm away from the import end to achieve complete vaporization but methanol (100%), methanol-water (75%: 25%), methanol-water (62%: 38%) and methanol-water (50%: 50%) were at 823mm, 983mm, 1023mm, The vaporization fully achieved. The results of these studies can be used as an important basis for the design of evaporator coil.

目錄
摘要 VII
ABSTRACT VIII
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XIV
符號說明 XV
第一章 緒論 1
1.1前言導論 1
1.2產氫簡介 2
1.2.1電解水產氫 2
1.2.2生質能產氫 2
1.2.3石化能源產氫 2
1.3燃料電池簡介 3
1.4重組器簡介 5
1.5文獻回顧 7
1.6研究動機與目的 9
第二章 蒸發重組器系統各元件概述 11
2.1系統簡介 11
2.2系統主要元件 12
第三章 研究方法 15
3.1物理模型介紹 15
3.2基本假設 16
3.3 統御方程式 16
3.3.1 質量守恆方程式 16
3.3.2 動量守恆方程式 17
3.3.3 能量守恆方程式 17
3.3.4 雷諾數 17
3.4邊界條件 18
3.4.1蒸發器盤管入口與出口邊界條件 18
3.4.2 蒸發器盤管與流道 19
3.4.3 蒸發器盤管之邊界熱源 21
3.4.4 蒸發器盤管與燃料材料參數設定 24
第四章 數值方法 27
4.1 COMSOL Multiphysics模擬分析軟體介紹 27
4.2 有限元素簡介 28
4.2.1 網格建構 28
4.2.2有限元素法之分析程序 29
4.3 CFD計算流體力學介紹 29
4.3.1 單向流 29
4.3.2 非等溫流 30
4.4網格系統 30
4.5數值模擬流程 34
第五章 結果與討論 35
5.1 常溫下燃料於蒸發器盤管內速度場分析 35
5.2設定溫度下燃料在蒸發器盤管內的速度場分析 39
5.3不同燃料在蒸發器盤管內蒸發情形 43
5.4不同燃料在蒸發器盤管出口的反應溫度 47
第六章 結論與未來展望 50
6.1結論 50
6.2未來展望 50
參考文獻 51


[1]N. Perdikaris, D. Panopoulos L. Fryda, E. Kakaras, “Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC”, Fuel Vol.88 (2009) 1365-1375.
[2]F. Sun, L. Fu, J. Sun, S. Zhang, “A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger”, Energy Vol.121 (2014) 245-251.
[3]A. Brunner, S. Marcks, M. Bajpai, K. Prasad, G. Advani, “Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications”, Energy Vol.37 (2012) 4457-4466.
[4]L. Ferrari, D. Bernardi, F. Massardo, “Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems”, Journal of Fuel Cell Science and Technology Vol.3 (2006) 284.
[5]F. Jing, M. Hou, W. Shi, J. Fu, H. Yu, P. Ming, B. Yi, “The effect of ambient contamination on PEMFC performance”, Journal of Power Sources Vol.166 (2007) 172-176.
[6]黃鎮江,“燃料電池 (第三版)”,臺中滄海書局,2008年。
[7]G. Kolb, “Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy”, Chemical Engineering and Processing: Process Intensification Vol.65 (2013) 1-44.
[8]A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, “Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review ”, Renewable and Sustainable Energy Reviews Vol.29 (2014) 355-368.
[9]F. Vitse, M. Cooper, G. Botte. “On the use of ammonia electrolysis for hydrogen production”, Journal of Power Sources Vol.142 (2005) 18–26
[10]J. He, S. Choe, C. Hong, “Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell”, Journal of Power Sources Vol.185 (2008) 973-984.
[11]J. He, J. Ahn, S. Choe, “Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack”, Journal of Power Sources Vol.196 (2011) 4655-4670.
[12]C. Liao, P. Erickson, “Characteristic time as a descriptive parameter in steam reformation hydrogen production processes”, International Journal of Hydrogen Energy Vol.33 (2008) 1652-1660.
[13]J. Han, I. Kim, K. Choi, “Purifier-integrated methanol reformer for fuel cell vehicles”, Journal of Power Sources Vol.86 (2000) 223-22.
[14]J. Mathiak, A. Heinzel, J. Roes, T. Kalk, H. Kraus, H. Brandt, “Coupling of a 2.5 kW steam reformer with a 1 kWel PEM fuel cell”, Journal of Power Sources Vol.131 (2004) 112-119.
[15]C. Pan, R. He, Q. Li, J. Jensen, N. Bjerrum, H. Hjulmand, A. Jensen, “Integration of high temperature PEM fuel cells with a methanol reformer”, Journal of Power Sources Vol.145 (2005) 392-398.
[16]B. Lindström, L. J. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications”, Journal of Power Sources Vol.118 (2003) 71-78.
[17]A. Tonkovich, S. Perry, Y. Wang, D. Qiu, T. LaPlante, W. Rogers, “Microchannel process technology for compact methane steam reforming”, Chemical Engineering Science Vol. 59 (2004) 4819-4824.
[18]O. Klenov, L. Makarshin, A. Gribovskiy, D. Andreev, V. Parmon, “CFD modeling of compact methanol reformer”, Chemical Engineering Journal Vol.282 (2015) 91-100.
[19] K. Lo, S. Wong, “A passively-fed methanol steam reformer heated with two-stage bi-fueled catalytic combustor”, Journal of Power Sources Vol.213 (2012) 112-118.
[20]X. Peng, G. Peterson, “The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels”, International Journal of Heat and Mass Transfer Vol.38 (1995) 755-758.
[21]X. Peng, B. Wang, G. Peterson, H. Ma, “investigation of heat transfer in flat plates with rectangular microchannels”, International Journal of Heat and Mass Transfer Vol.389 (1995) 127-137.
[22]X. Peng, G. Peterson, “Convective heat transfer and flow friction for water flow in microchannel structures”, International Journal of Heat and Mass Transfer Vol.39 (1996) 2599-2608.
[23]S. Nagano, H. Miyagawa, O. Azegami, K. Ohsawa, “Heat transfer enhancement in methanol steam reforming for a fuel cell”, Energy Conversion and Management Vol.42 (2001) 1817-1829.
[24]A. Kundu, J. Park, J. Ahn, S. Park, Y. Shul, H. Han, “Micro-channel reactor for steam reforming of methanol”, Fuel Vol.86 (2007) 1331-1336.
[25]C. Hsueh, H. Chu, W. Yan, C. Chen, M. Chang, “Numerical study of heat and mass transfer in the plate methanol steam micro-reformer channels”, Applied Thermal Engineering Vol.30 (2010) 1426-1437.
[26]A. Gribovskiy, L. Makarshin, D. Andreev, S. Klenov, V. Parmon, “A compact highly efficient multichannel reactor with a fixed catalyst bed to produce hydrogen via methanol steam reforming”, Chemical Engineering Journal Vol. 231 (2013) 497-501.
[27]F. Chen, M. Chang, C. Kuo, C. Hsueh, W. Yan, “Analysis of a plate-type Microreformer for methanol steam reforming reaction”, Energy & Fuels vol.23 (2009) 5092-5098.
[28]S. Ahmed, R. Kumar, M. Krumpelt, “Methanol partial oxidation reformer”, Fuel Cells Bulletin Vol.2 (1999) 14.
[29]A. Haryanto, S. Fernando, N. Murali, S. Adhikari, “Current status of hydrogen production techniques by steam reforming of ethanol: A review”, Energy & Fuels Vol. 19 (2005) 2098-2106.
[30] P. Huang, J. Kuo, and Z. Wu, “Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production”, International Journal of Hydrogen Energy vol.41 (2016) 8514–8524.
[31] R. Ma, B. Castro-Dominguez, I. Mardilovich, A. Dixon, and Y. Ma, “Experimental and simulation studies of the production of renewable hydrogen through ethanol steam reforming in a large-scale catalytic membrane reactor”, Chemical Engineering Journal vol.303 (2016) 302–313.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊