跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林亨翰
研究生(外文):Lin,Leng-Lan
論文名稱:鋰離子電池用纖維型鋰鎳錳氧高電壓正極之開發與電極特性
論文名稱(外文):Development of Fiber-Type Li-Ni-Mn-O High-Voltage Cathode and Electrode Characteristics for Lithium Ion Battery
指導教授:劉奕宏劉奕宏引用關係
指導教授(外文):Liu,Yi-Hung
口試委員:張家欽許君漢李立鼎
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:碳纖維鋰離子電池高電壓正極材料
外文關鍵詞:Carbon FiberLithium Ion BatteryHigh VoltageCathode Material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著電動車和混合動力電動車等新世代運輸工具的到來,二次電池朝向大型化發展,對於其高功率密度及穩定性的要求也越來越高。為了滿足要求,在集電體上減少添加物並提供更多活性材料負載的電極設計為本研究的主要研究方向。碳纖維是一種同時具有質量輕及良好導電體的無機材料,製備碳纖維型電極的過程中不需添加而外的添加劑,能簡化製備成本,因此被選定為電極材料開發對象。
在本研究中,在相對低溫的水熱環境下將複合材料Li -Ni-Mn-O合成於碳纖維上,並且在不添加其他導電劑或黏著劑的情況下,成功製備擁有高電壓特性的纖維型電極。藉由調整電沉積反應時不同Mn:Ni=8:2、7:3、6:4和5:5莫爾比的電沉積液製備不同前軀物,接著經過水熱反應和鍛燒後得到纖維型電極。從同步輻射(SPring-8)的 X-Ray繞射分析發現,只有Mn:Ni=7:3和6:4同時具有尖晶石LiMn2O4和LiNi0.5Mn1.5O4的波峰。並從充放電測試中得知,僅Mn:Ni=7:3(LNMO-7)在4.5 V和4 V都有平台的表現,呈現尖晶石LiMn2O4和LiNi0.5Mn1.5O4的電化學特性,其電容量為142 mAh/g,在高電壓和電容量之表現較佳。LNMO-7在400 °C鍛燒後,從拉曼光譜分析得知在500 cm-1位置呈現Ni2+的波峰偏向較高頻率,並在595~625 cm-1的波段明顯地分成兩部分,可歸因於Mn離子平均價數的增加,有利於增加其晶體結構的電化學穩定性。
藉由調整水熱反應時氫氧化鋰的濃度,從LiOH:Precursor=200:1降低為30:1時,發現在第一循環的不可逆電容量從55%降低為44%,此不可逆電容量主要來自於層狀Li2MnO3的特性。將纖維型電極在LiOH:Precursor=200:1(LNMO-7)和LiOH:Precursor=30:1(LNMO-7-30)水熱反應後的活化物,經由同步輻射(SP-8)的X-Ray繞射分析,發現在LNMO-7-30在2θ=36.38°、43.63°和63.2°的峰值強度得到提升,可對應到尖晶石LiMn2O4的波峰位置,因此判斷在LiOH:Precursor=30:1的條件下會生成更多的尖晶石LiMn2O4。並從循環伏安測試中得知,LNMO-7-30增加了尖晶石LiMn2O4的電化學特性,但相對減少了晶尖石LiNi0.5Mn1.5O4的電化學特性。在循環壽命測試中,LNMO-7纖維型電極因為尖晶石LiNi0.5Mn1.5O4的電化學作用相對增強,有較好的電容量維持率表現。
本研究製備之纖維型Li-Ni-Mn-O電極,在2.5~4.9 V的高電壓區間進行循環壽命測試,經過80個週期的充放電後仍有130 mAh/g的電容量,電容量維持率達到92%。

In recent years, with the increasing-growing market of the electric vehicles (EVs), hybrid electric vehicles (HEVs) as well as other new-generation transportation tools, development of secondary batteries is towards large-scale, requiring high power density and stability. To meet the requirement, a battery design capable of affording more active material loading on an electrically conductive network without other additives is therefore preferred.
In this study, a nickel-manganese-based cathode is developed using carbon fibers as current collectors via a low-temperature sequential process, including the electrodeposition and the hydrothermal reaction. The binder free fiber-type cathode, which combines the advantages of carbon fiber and active material of Li-Ni-Mn-O, is electrochemically stable against high-voltage . In the preparation process, Mn:Ni molar ratio in the electrodeposition solution was varied from 8:2, through 7:3, 6:4 to 5:5. followed by the hydrothermal reaction and calcination to obtain the fiber-type cathodes
The synchrotron XRD patterns found, just Mn: Ni = 7: 3 and 6: 4 both have spinel LiMn2O4 and LiNi0.5Mn1.5O4 peak. According to the charge / discharge test, only the cathode of Mn: Ni = 7: 3 (LNMO-7) has discharge plateaus at voltage around 4.5 V and 4 V, demonstrating the typical spinel LiMn2O4 and LiNi0.5Mn1.5O4 electrochemical properties, and its discharge capacity is 142 mAh/g.
Regarding the Raman analysis of LNMO-7 calcined at 400 ºC, the band at 501 cm-1slightly shifts toward higher frequencies and the two split bands are found at 595~625 cm-1. This can be attributed to the increase of the average valence state of Mn ions, corresponding to its better electrochemical stability.
When the concentration of LiOH in the hydrothermal reaction is reduced from LiOH:Precursor=200:1 to 30:1, it is found that the irreversible capacity in the first cycle is reduced from 55 to 44%, which is attributed to the characteristics of layered Li2MnO3. Active materials synthesized during the hydrothermal reaction of LiOH:Precursor= 200:1(LNMO-7) and LiOH:Precursor=30:1(LNMO-7-30) were analyzed by synchrotron (SP-8) X-Ray diffraction, showing that the peak intensity of spinel LiMn2O4 in LNMO-7-30 at 2θ = 36.38°, 43.63° and 63.2° is higher than LNMO-7. It is indicated that more spinel LiMn2O4 phase is present in LNMO-7-30. It is also known from its cyclic voltammetry of LNMO-7-30 that the electrochemical characteristics of spinel LiMn2O4, is more pronounced rather than the LiNi0.5Mn1.5O4. Further, in the cyclic life test, the LNMO-7 fiber electrode exhibits better capacity retention due to the presence of spinel LiNi0.5Mn1.5O4.
In summary, the developed fiber-type Li-Ni-Mn-O shows its high electrochemical stability against the high voltage operation of 2.5-4.9 V, delivering a favorable discharge capacity of 140 mAh/g-1 with a high capacity retention (>90%) after 80 cycles.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章、緒論 1
1-1鋰電池產業發展趨勢 1
1-2鋰離子電池組成及工作原理 2
1-3鋰離子電池組成材料 4
1-3-1鋰離子電池正極材料 4
1-3-2負極材料 9
1-3-3黏著劑 10
1-3-4隔離膜 11
1-3-5電解質 12
1-3-6正(負)極集電體 13
1-4纖維型電極 14
1-4-1碳纖維 14
1-4-2 電子傳遞方式 15
1-5研究目的 15
第二章、文獻回顧 17
2-1錳系材料 17
2-1-1 Li2MnO3 17
2-1-2 LiMn2O4 20
2-1-3LiNi0.5Mn1.5O4 27
2-2 三維集電體 31
2-2-1新型銅箔集電體 32
2-2-2 碳纖維集電體應用於鋰離子電池 33
第三章、實驗方法 36
3-1實驗架構 36
3-2 纖維型電極和鈕扣型電池製備 39
3-2-1 實驗藥品與儀器 39
3-2-2 碳纖維型電極製備 40
3-2-3纖維型電極改良應用於鈕扣型電池 41
3-2-4 CR2032鈕扣型電池製備 42
3-3分析儀器 43
3-3-1充放電機台 44
3-3-2傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared SpectroscopyFTIR) 44
3-3-3掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 44
3-3-4 X光繞射儀(X-ray Diffraction, XRD) 45
3-3-5恆電位儀 46
3-3-6拉曼光譜儀 47
3-3-7熱重量分析儀(TGA) 47
第四章、結果與討論 48
4-1 碳纖維前處理 48
4-1-1 碳纖維表面前處理 48
4-1-2 碳纖維對於鋰離子電池之電化學表現 49
4-2 Li-Mn-O纖維型電極分析 51
4-2-1 X光繞射(X-ray Diffraction, XRD)分析 51
4-2-2 晶體結構分析 51
4-2-3 表面形貌分析 52
4-2-4 充放電性測試 53
4-3 活化物(鎳)纖維型電極分析 55
4-4 小結論 57
4-5 Li-Ni-Mn-O纖維型電極分析 57
4-5-1 前驅物X光繞射(X-ray Diffraction, XRD)分析 58
4-5-2 熱重分析 58
4-5-3 表面形貌(SEM)分析 59
4-5-4 晶體結構分析 60
4-5-5 同步加速器光源之X-射線繞射分析(SPring-8) 61
4-5-6 充放電測試(Charge/Discharge curve) 64
4-5-7 拉曼光譜分析(Raman) 66
4-5-8 循環伏安測試(CV) 67
4-5-9 小結論 68
4-6不同LiOH:Precursor莫爾比下的纖維型電極 68
4-6-1電性測試 69
4-6-2 同步輻射(SP-8)XRD分析 70
4-6-3 循環伏安(CV)分析 71
4-6-4 循環壽命(Long cycle)分析 73
4-6-5 充放電速率(C Rate test)分析 76
4-7 纖維型電極改良應用於鈕扣型電池 77
4-7-1 充放電速率分析 77
4-7-2 EIS測試 79
第五章、結論與未來展望 81
5-1 結論 81
5-2 未來展望 83
第六章、參考文獻 84


1.羅仁志, 材料世界網, (2016/2)。
2.D. Chen, B. Li, Y. Li, H.Lin, H. Lin, L. Xing, Energy & Environmental Science, 18 (2011) 3243-3262.
3.Y. S. Meng, M. E. Arroyo-de Dompablo, Energy & Environmental Science, 2 (2009) 589-609.
4.C. Daniel, D. Mohanty, J. Li. D. L. Wood, Electrochemical Storage Materials and Technology, 1597 (2014) 26-43.
5.P. Rozier, J. M. Tarascon, Journal of the Electrochemical Society, 162 (2015) A2490-A2499.
6.R. J. Gummow, A. De. Kock, M. M. Thackeray, Solid State Ionics, 69 (1994) 59-67.
7.H. Wang, Journal of Nanoscience and Nanotechnology, 15 (2015) 6883-6890.
8.G. B. Zhong, Y. Y. Wang, X. J. Zhao, Q. S. Wang, Y. Yu, C. H. Chen, Journal of Power Sources, 216 (2012) 368-375.
9.呂承璋, 鄭敬則, 劉文龍, 張志溢, 工業材料雜誌, 326 (2014/02)。
10.M. Yoshio, R. J. Brodd, A. Kozawa, Science and Technologies, Springer, (2009).
11.李治宏, 龔丹誠, 工業材料雜誌, 339 (2015/03)。
12.張清治, 林嘉南, 吳偉新, 方家振, 工業材料雜誌, 302 (2012/02)。
13.邱秋燕, 工業材料雜誌, 310 (2012/10)。
14.鍾秀瑩, 翁榮洲, 謝登存, 呂學隆, 工業材料雜誌, 351 (2016/03)。
15.J. Rana, M. Stan, R. Kloepsch, J. Li, G. Schumacher, E. Welter, Advanced Energy Materials, 4 (2014) 130-0998.
16.L. Torres-Castro, J. Shojan, C. M. Julien, A. Huq, C. Dhital, Journal of the Electrochemical Society, (2015) 13-22.
17.D. Ye. C. Sun, Y. Chen, K. Ozawa, D. Hulicova-Jurcakova, J. Zou, Nano Research, 8 (2015) 808-820.
18.M. Tabuchi, A. Nakashima. K. Ado, H. Kageyama, Chemistry of Materials, 17 (2005) 4668-4677.
19.X. Lv, S. Chen, C. Chen, L. Liu, F. Liu, Solid State Sciences, 31 (2014) 16-23.
20.S. M. Yao, J. W. Zhang, X. Guo, X. P. Qiu, Chemical Research in Chinese Universities, 29 (2013) 307-310.
21.Y. Fu, H. Jiang, Y. Hu, Y. Dai, L. Zhang, Industrial & Engineering Chemistry Research, 54 (2015) 3800-3805.
22.W. Ren, R. Luo, Z. S. Liu, X. Y. Tan, Z. Y. Fu, Journal of The Electrochemical Society, 7 (2012) 2504-2512.
23.X. Huang, Q. Zhang, J. Gan, H. Chang, Y. Yang, Journal of the Electrochemical Society, 158 (2011) A139-A145.
24.C. P. Yang, Y. X. Yin, S. F. Zhang, N. W. Li, Y. G. Guo, Nature Communications, 6 (2015) 8058-9058.
25.G. H. Waller, S. Y. Lai, B. H. Rainwater, M. Liu, Journal of Power Sources, 251 (2014) 411-416.
26.X. Fang, M. Ge, J. Rong, C. Zhou, ACS nano, 8 (2014) 4876-4882.
27.汪建民, 材料分析, 中國材料學會出版社, (1998)。
28.羅聖全, 小奈米大世界。
29.林麗娟, X光繞射原理及其應用, 工業材料86期, (1994)。
30.鄭信民, 林麗娟, 工業材料雜誌, 181 (2002) 68。
31.胡啟章, 電化學原理與方法, (2011)。
32.莊全超, 化學進度, 22 (2010/6) 6。
33.劉宇, 儀器分析, (2010/8)。
34.M. Li, Y. Gu, Y. Liu. Y. Li, Z. Zhang, Carbon, 52 (2013) 109-121.
35.L. Yao, M. Li, Q. Wu, Z. Dai, Y. Gu, Y. Li, Z. Zhang, Applied Surface Science, 263 (2012) 326-333.
36.C. L. Chiang, C. C. M. Ma, European Polymer Journal, 38 (2002) 2219-2224.
37. G. Thomas, R. Kumar, A. Katiyar, R. S, Journal of The Electrochemical Society, 159 (2012) A410-A420.
38.J. R. Croy, J. S. Park, F. Dogan, C. S. Johnson, B. Key, M. Balasubramanian, Chemistry of Materials, 26 (2014) 7091-7098.
39.C. S. Johnson, N. Li, J. T. Vaughey, S. A. Hackney, M. M. Thackeray, Electrochemistry Communications, 7 (2005) 528-536.
40.W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu, K. Zhu, Nano Letters, 13 (2013) 2036-2040.
41.L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang, M. Liu, Nano Letters, 13 (2013) 3135-3139.
42.W. Sun, X. Rui, M. Ulaganathan, S. Madhavi, Q. Yan, Journal of Power Sources, 295 (2015) 323-328.
43.A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Solid State Ionics, 180 (2010) 1652-1659.
44.X. Sun, C. Ma, Y. Wang, H. Li, Inorganic Chemistry Communications, 5 (2002) 747-750.
45.N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C. M. Julien, Ionics, 12, (2006) 117-126.
46.X. Zhang, F. Cheng, J. Yang, J. Chen, Nano Letters, 13 (2013) 2822-2825.
47.N. Yabuuchi, K. Kubota, Y. Aoki, S. Komaba, The Journal of Physical Chemistry C, 120 (2016) 875-885.
48.G. B Zhong, Y. Y Wang, X. J Zhao, Q. S. Wang, Y. Yu, C. H. Chen, Journal of Power Sources, 216 (2012) 368-375.
49.J. Li, Y. Zhang, J. Li, L. Wang, X. He, J. Gao, Ionics, 17 (2011) 671-675.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top