1. 劉吉平, 郝向陽, 羅煥耿, 奈米科學與技術, 2003
2. Gene, A. S., Structural, Optical and Magnetic Characterization of Spinel Zinc Chromite (ZnCr2O4) Nanocrystals Synthesized by Thermal Treatment Method, 2014.
3. Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17 (6), pp 975-986.
4. 牟中原, 陳家俊, 奈米材料研究發展, 科學發展月刊. 2000, 28(4), pp.281-288.5. Scholl, J. A.; Garcia-Etxarri, A.; Koh, A. L.; Dionne, J. A., Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013, 13 (2), pp 564-569
6. Arakawa, Y.; Sakaki, H., Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40 (11), pp 939-941.
7. Chen, Chia-Chun.; Herhold, A. B.; Johnson, C. S., Alivisatos, A. P.,, Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science. 1997, 276 (5311), pp 398-401
8. 詹國禎, 砷化銦量子點的光電性質, 物理雙月刊. 2003, 25(3), pp 1-7.9. Donega, C. D. M.; Liljeroth, P.; Vanmaekelbergh, D., Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small. 2005, 1 (12), pp 1152-1162.
10. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, pp 4847-4854.
11. Mehranpoura, H.; Askaria, M.; Ghamsarib, M. S., LaMer theory approach to study the nucleation and growth of sol-gel derived TiO2 nanoparticles. In Proceedings of the 4th International Conference on Nanostructures (ICNS 4), Kish Island, I.R. Iran, 2012; pp 1710-1712.
12. Viswanatha, R.; Sarma, D. D., Nanomaterials Chemistry. 2007.
13. García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H.; Owen, J. S., Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors. Chem. Mater. 2013, 25 (8), pp 1233-1249.
14. Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L., Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal. Chem. 2011, 83 (23), pp 8826-8837.
15. Neouze, M. A.; Schubert, U., Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatsh. Chem. 2008, 139 (3), pp 183-195.
16. Allen, P. M.; Liu, W.; Chauhan, V. P.; Lee, J.; Ting, A. Y.; Fukumura, D.; Jain, R. K.; Bawend, M. G., InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. J. Am. Chem. Soc. 2010, 132, pp 470-471.
17. Wei, S.-H.; Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 1998, 72 (16), 2011-2013.
18. Lim, J.; Bae, W. K.; Kwak, J.; Lee, S.; Lee, C.; Char, K., Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express. 2012, 2 (5), pp 594-628.
19. Norris, D. J.; Efros, A. L.; Erwin, S. C., Doped Nanocrystals. Science. 2008, 319 (5871), pp 1776-1779.
20. Petryayeva, E.; Algar, W. R.; Medintz, I. L., Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013, 67 (3), pp 215-252.
21. Shen, S.; Wang, Q., Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chem. Mater. 2013, 25 (8), pp 1166-1178.
22. Murray, C. B.; Noms, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, pp 8706-8715.
23. Zheng, Y.; Gao, S.; Ying, J. Y., Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots. Adv. Mater. 2007, 19 (3), pp 376-380.
24. Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P., Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133 (41), pp 16422-16424.
25. Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic´, V., Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett. 2009, 9, pp 2532-2536.
26. Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W., Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24 (30), pp 4180-4185.
27. Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S., Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 2009, 105 (7), 073106.
28. 陳學仕, 半導體膠體量子點之未來應用-電激發光元件., 化工科技與商情. 2005, 22, pp 60-66.
29. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V., Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics. 2012, 7 (1), pp 13-23.
30. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature. 2014, 515 (7525), pp 96-99.
31. Zayats, A. V.; Smolyaninov, I. I.; Maradudin., A. A., Nano-optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, pp 131-314.
32. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107, pp 668-677.
33. Aslan, K.; Lakowicz, J. R.; Szmacinski, H.; Geddes, C. D., Metal-Enhanced Fluorescence Solution-Based Sensing Platform. J. Fluoresc. 2004, 14 (6), pp 677–679.
34. Zhang, Y.; Aslan, K.; Previte, M. J. R.; Geddes, C. D., Low Temperature Metal-Enhanced Fluorescence. J. Fluoresc. 2007, 17 (6), pp 627-631.
35. Xie, R.; Battaglia, D.; Peng, X., Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared. J. Am. Chem. Soc. 2007, 129 (50), pp 15432–15433
36. Mikik, I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N., Synthesis and Characterization of InP, Gap, and GaInP2 Quantum Dots. J. Phys. Chem. 1995, 99, pp 7754−7759.
37. Battaglia, D.; Peng, X., Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2002, 2 (9), pp 1027-1030.
38. Gary, D. C.; Glassy, B. A.; Cossairt, B. M., Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors. Chem. Mater. 2014, 26 (4), pp 1734-1744.
39. Li, L.; Protière, M.; Reiss, P., Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor. Chem. Mater. 2008, 20 (8), pp 2261-2623.
40. Lauth, J.; Strupeit, T.; Kornowski, A.; Weller, H., A Transmetalation Route for Colloidal GaAs Nanocrystals and Additional III–V Semiconductor Materials. Chem. Mater. 2013, 25 (8), pp 1377-1383.
41. Ping Yan, Y. X.; Wang, W.; Liu, F.; Qian, Y., A low-temperature route to InP nanocrystals. J. Mater. Chem. 1999, 9, pp 1831-1833.
42. Liu, Z.; Kumbhar, A.; Xu, D.; Zhang, J.; Sun, Z.; Fang, J., Coreduction colloidal synthesis of III-V nanocrystals: the case of InP. Angew. Chem. Int. Ed. 2008, 47 (19), pp 3540-3542.
43. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹-TEM., 小奈米大世界期刊. 2003
44. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM., 小奈米大世界期刊. 2003
45. 林麗娟, X光繞射原理及其應用., 工業材料. 1994, 86, pp 100-109.46. Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z., Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27 (13), pp 4893-4898.
47. Lin, M.-H.; Chen, H.-Y.; Gwo, S., Layer-by-Layer Assembly of Three-Dimensional Colloidal Supercrystals with Tunable Plasmonic Properties. J. Am. Chem. Soc. 2010, 132, pp 11259-11263.
48. Jing, P.; Liu, J. Z. I.; Lv, S.; Kong, X.; Zhao, J.; Masumoto, Y., Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots. J. Phys. Chem. C. 2009, 113, pp 13545-13550.
49. Shi, A.; Wang, X.; Meng, X.; Liu, X.; Li, H.; Zhao, J., Temperature-dependent photoluminescence of CuInS2 quantum dots. J. Lumin. 2012, 132 (7), pp 1819-1823.
50. Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donegá, C. d. M.; Meijerink, A., High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano. 2012, 6 (10), pp 9058-9067.
51. Kim, J. I.; Kim, J.; Lee, J.; Jung, D.-R.; Kim, H.; Choi, H.; Lee, S.; Byun, S.; Kang, S.; Park, B., Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 2012, 7 (428), pp 1-7.