(54.236.62.49) 您好!臺灣時間:2021/03/08 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡詩涵
研究生(外文):Jian, Shi-Han
論文名稱:以液相層析串聯式質譜技術檢測肉類製成品中的雜環胺化合物
論文名稱(外文):Analysis of Heterocyclic Aromatic Amines in Meat Products by Liquid Chromatography - Tandem Mass Spectrometry
指導教授:陳頌方
指導教授(外文):Chen, Sung-Fang
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:雜環胺化合物液相層析-串聯式質譜儀固相萃取法液相萃取法定量QuEChERS
外文關鍵詞:Heterocyclic aromatic aminesHPLC-MS/MSQuEChERSSPELLEquantitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雜環胺化合物已經被證實可能在人體中會導致癌症發生,國際癌症研究機構(The International Agency for Research on Cancer, IARC)將MeIQ、MeIQx及PhIP歸類為2B類致癌物,IQ則歸類為2A類致癌物,2011年國家毒理學計畫(National Toxicology Program)指出MeIQ、MeIQx、IQ及PhIP也皆可被合理預期為誘發人類癌症的物質。在平常家庭烹煮肉類條件下,約150℃下烹煮如牛肉、豬肉及魚類等蛋白質含量豐富的肉類即會產生雜環胺化合物。為達最佳萃取效率,針對肉類樣品中的11種雜環胺化合物進行樣品前處理優化,開發並比較兩種樣品前處理法,第一種為液相萃取(Liquid-Liquid Extraction, LLE)法搭載固相萃取法(Solid-Phase Extraction, SPE)之樣品前處理法,第二種為較新穎的QuEChERS樣品前處理法,經過萃取後搭配高效能液相層析及串聯式質譜儀(HPLC-MS/MS)進行檢測。使用乙腈做為液相萃取溶劑,接著使用Oasis® MCX的管柱進行萃取,QuEChERS法首先使用乙腈做液相微萃取溶劑,C18EC、PSA及MgSO4做為分散式固相萃取吸附劑(dSPE)。11種雜環胺化合物在此兩種方法驗證下得到很好的精密度(RSD < 15.15%)、準確率(79.80-117.64%)、回收率(52.39-116.88%)、偵測極限(0.01-10 ppb)及線性回歸之相關係數(r > 0.993)。此外,QuEChERS樣品前處理法具有較好的線性動態範圍,因此具有更高的靈敏度。此兩種法也成功應用在檢測市面上肉類製成品(肉鬆及肉乾)中的雜環胺化合物。在六種樣品中可定量出三至四種的雜環胺化合物,定量出的濃度範圍為0.06-718.46ppb。
Heterocyclic aromatic amines (HCAs) comprise of a class of > 25 compounds, which primarily generated unintended hazardous substances by heating or processing of meats from cooking of proteinaceous foods at temperatures above 150℃. In addition, several of them have been found to be carcinogenic in animals, causing tumors in diverse organs across multiple species. The International Agency for Research on Cancer (IARC) has classified three HCAs (MeIQ, MeIQx, and PhIP) as being possible human carcinogens (Group 2B) and one HCA (IQ) to be a probable human carcinogen (Group 2A). In this study, two sample preparation strategies, liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and quick, easy, cheap, effective, rugged, and safe extractions (QuEChERS) method, were investigated for the determination of 11 types of HCAs in meat products by LC-MS/MS. HCAs in sample were first extracted with acetonitrile by LLE, and followed by SPE using Oasis® MCX cartridges. In QuEChERS extraction, acetonitrile is used as LLME solvent, and PSA, C18EC and MgSO4 are served as dSPE sorbent. Both methods showed good performances on precision (RSD < 15.15%), accuracy (79.80-117.64%), recovery (52.39-116.88%), limit of quantitation for the spiked meat extract (0.01-10 ppb) and correlation coefficients (>0.993). QuEChERS extraction strategy gives better linear dynamic range and superior sensitivity in comparison with LLE-SPE approach. Eventually, HCAs were successfully quantified in real samples by two proposed approaches on LC-MS/MS system.
謝誌 I
目錄 II
圖目錄 IV
表目錄 VI
Abstract VII
中文摘要 VIII
第一章 序論 1
第一節 雜環胺化合物 1
第二節 樣品前處理 5
一、 液相萃取方法 5
二、 固相萃取方法 6
三、 QuEChERS方法 8
第三節 高效能液相層析分離技術 10
一、 層析管柱靜相之材質 11
二、 偵測器 12
第四節 質譜儀技術 13
一、 電噴灑游離法 14
二、 三段四極桿串聯式質譜儀 15
三、 電子倍增管 17
第五節 多重反應監測之定量分析 18
第二章 實驗材料與方法 20
第一節 實驗試劑 20
第二節 實驗樣品 20
第三節 實驗設備 21
第四節 實驗方法 21
一、 樣品前處理 21
二、 高效能液相層析參數設定 26
三、 質譜儀參數設定 27
四、 校正曲線的繪製 27
五、 方法驗證 28
第三章 結果與討論 29
第一節 高效能液相層析參數設定優化 29
一、 管柱的選擇 29
二、 移動相 30
三、 梯度優化 30
第二節 質譜儀參數設定優化 32
一、 離子源參數 32
二、 離子對的選擇及電壓優化 33
第三節 樣品前處理優化 35
一、 定義空白基質 35
二、 液相萃取之萃取溶劑選擇 36
三、 固相萃取條件優化 38
四、 QuEChERS條件優化 40
第四節 方法驗證 44
一、 檢量線 44
二、 準確度及精密度 47
三、 回收率 50
四、 基質效應 52
第五節 與其它現有測量雜環胺化合物之方法比較 53
第六節 定量市售的肉類成品 54
結論與未來展望 56
第四章 參考文獻 57
Skog, K. I., Johansson, M. A., and Jagerstad, M. I. (1998) Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake, Food Chem Toxicol 36, 879-896.
2. Doll, R., and Peto, R. (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today, Journal of the National Cancer Institute 66, 1191-1308.
3. Widmark, E. (1939) Presence of cancer-producing substances in roasted food, Nature 143, 984.
4. Nagao, M., Honda, M., Seino, Y., Yahagi, T., and Sugimura, T. (1977) Mutagenicities of smoke condensates and the charred surface of fish and meat, Cancer Letters 2, 221-226.
5. Sugimura, T., Nagao, M., Kawachi, T., Honda, M., Yahagi, T., Seino, Y., Sato, S., Matsukura, N., Matsushima, T., and Shirai, A. (1977) Mutagen-carcinogens in food, with special reference to highly mutagenic pyrolytic products in broiled foods, Origins of Human Cancer 4, 1561-1577.
6. John, K., and Beedanagari, S. (2014) Heterocyclic Aromatic Amines.
7. Turesky, R. J. (2007) Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats, Toxicology letters 168, 219-227.
8. Commoner, B., Vithayathil, A. J., Dolara, P., Nair, S., Madyastha, P., and Cuca, G. C. (1978) Formation of mutagens in beef and beef extract during cooking, Science 201, 913-916.
9. Adamson, R. H., Takayama, S., Sugimura, T., and Thorgeirsson, U. P. (1994) Induction of hepatocellular carcinoma in nonhuman primates by the food mutagen 2-amino-3-methylimidazo [4, 5-f] quinoline, Environmental health perspectives 102, 190.
10. Sugimura, T., Wakabayashi, K., Nagao, M., and Esumi, H. (1993) A new class of carcinogens: heterocyclic amines in cooked food, Food, Nutrition and Chemical Toxicity, 259-276.
11. Wakabayashi, K., Nagao, M., Esumi, H., and Sugimura, T. (1992) Food-derived mutagens and carcinogens, Cancer Research 52, 2092s-2098s.
12. Ohgaki, H., Takayama, S., and Sugimura, T. (1991) Carcinogenicities of heterocyclic amines in cooked food, Mutation Research/Genetic Toxicology 259, 399-410.
13. Felton, J., and Knize, M. (1990) Heterocyclic-amine mutagens/carcinogens in foods, In Chemical carcinogenesis and mutagenesis I, pp 471-502, Springer.
14. Adamson, R. H., Thorgeirsson, U. P., Snyderwine, E. G., Thorgeirsson, S. S., Reeves, J., Dalgard, D. W., Takayama, S., and Sugimura, T. (1990) Carcinogenicity of 2‐Amino‐3‐methylimidazo [4, 5‐f] quinoline in Nonhuman Primates: Induction of Tumors in Three Macaques, Cancer Science 81, 10-14.
15. Yoshimi, N., Sugie, S., Iwata, H., Mori, H., and Williams, G. M. (1988) Species and sex differences in genotoxicity of heterocyclic amine pyrolysis and cooking products in the hepatocyte primary culture/DNA repair test using rat, mouse, and hamster hepatocytes, Environmental and molecular mutagenesis 12, 53-64.
16. Anastassiades, M., Lehotay, S. J., Štajnbaher, D., and Schenck, F. J. (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, Journal of AOAC International 86, 412-431.
17. Program, N. T. (2011) Cadmium and cadmium compounds, Report on carcinogens: carcinogen profiles 12, 80.
18. Alaejos, M. S., Ayala, J., González, V., and Afonso, A. (2008) Analytical methods applied to the determination of heterocyclic aromatic amines in foods, Journal of Chromatography B 862, 15-42.
19. Gross, G., and Grüter, A. (1992) Quantitation of mutagegnic/carcinogenic heterocyclic aromatic amines in food products, Journal of Chromatography A 592, 271-278.
20. Arvidsson, P., Boekel, M., Skog, K., and Jägerstad, M. (1997) Kinetics of formation of polar heterocyclic amines in a meat model system, Journal of food science 62, 911-916.
21. Janoszka, B., Błaszczyk, U., Warzecha, L., Strózyk, M., Damasiewicz-Bodzek, A., and Bodzek, D. (2001) Clean-up procedures for the analysis of heterocyclic aromatic amines (aminoazaarenes) from heat-treated meat samples, Journal of Chromatography A 938, 155-165.
22. Toribio, F., Puignou, L., and Galceran, M. (1999) Evaluation of different clean-up procedures for the analysis of heterocyclic aromatic amines in a lyophilized meat extract, Journal of Chromatography A 836, 223-233.
23. Molins-Legua, C., and Campins-Falcó, P. (2005) Solid phase extraction of amines, Analytica chimica acta 546, 206-220.
24. Casal, S., Mendes, E., Fernandes, J., Oliveira, M., and Ferreira, M. (2004) Analysis of heterocyclic aromatic amines in foods by gas chromatography–mass spectrometry as their tert.-butyldimethylsilyl derivatives, Journal of Chromatography A 1040, 105-114.
25. Vainiotalo, S., Matveinen, K., and Reunanen, A. (1993) GC/MS determination of the mutagenic heterocyclic amines MeIQx and DiMeIQx in cooking fumes, Fresenius' journal of analytical chemistry 345, 462-466.
26. Dasgupta, A. (1998) Gas chromatographic–mass spectrometric identification and quantification of aniline after extraction from serum and derivatization with 2, 2, 2-trichloroethyl chloroformate, a novel derivative, Journal of Chromatography B: Biomedical Sciences and Applications 716, 354-358.
27. Richling, E., Decker, C., Häring, D., Herderich, M., and Schreier, P. (1997) Analysis of heterocyclic aromatic amines in wine by high-performance liquid chromatography–electrospray tandem mass spectrometry, Journal of Chromatography A 791, 71-77.
28. Holder, C. L., Preece, S. W., Conway, S. C., Pu, Y. M., and Doerge, D. R. (1997) Quantification of heterocyclic amine carcinogens in cooked meats using isotope dilution liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry, Rapid communications in mass spectrometry 11, 1667-1672.
29. DeBruin, L. S., Josephy, P. D., and Pawliszyn, J. B. (1998) Solid-phase microextraction of monocyclic aromatic amines from biological fluids, Analytical chemistry 70, 1986-1992.
30. Wu, Y.-C., and Huang, S.-D. (1999) Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of aromatic amines, Analytical chemistry 71, 310-318.
31. 31. Knize, M., Cunningham, P., Griffin, E., Jones, A., and Felton, J. (1994) Characterization of mutagenic activity in cooked-grain-food products, Food and chemical toxicology 32, 15-21.
32. Garrigos, M., Reche, F., Pernı́as, K., Sanchez, A., and Jimenez, A. (1998) Determination of some aromatic amines in finger-paints for children's use by supercritical fluid extraction combined with gas chromatography, Journal of Chromatography A 819, 259-266.
33. Scott, K. A., Turesky, R. J., Wainman, B. C., and Josephy, P. D. (2007) Hplc/electrospray ionization mass spectrometric analysis of the heterocyclic aromatic amine carcinogen 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine in human milk, Chemical research in toxicology 20, 88-94.
34. Turesky, R. J., Taylor, J., Schnackenberg, L., Freeman, J. P., and Holland, R. D. (2005) Quantitation of carcinogenic heterocyclic aromatic amines and detection of novel heterocyclic aromatic amines in cooked meats and grill scrapings by HPLC/ESI-MS, Journal of agricultural and food chemistry 53, 3248-3258.
35. Lee, K.-J., Lee, G.-H., Kim, H., Oh, M.-S., Chu, S., Hwang, I. J., Lee, J.-y., Choi, A., Kim, C.-i., and Park, H.-M. (2015) Determination of heterocyclic amines and acrylamide in agricultural products with liquid chromatography-tandem mass spectrometry, Toxicological research 31, 255.
36. Yan, Y., Zeng, M.-M., Zheng, Z.-P., He, Z.-Y., Tao, G.-J., Zhang, S., Gao, Y.-H., and Chen, J. (2014) A novel one-step extraction method for simultaneously determining eleven polar heterocyclic aromatic amines in meat products by UHPLC-MS/MS, Analytical Methods 6, 6437-6444.
37. Choi, M. H., Kim, K.-R., and Chung, B. C. (2000) Determination of hair polyamines as N-ethoxycarbonyl-N-pentafluoropropionyl derivatives by gas chromatography–mass spectrometry, Journal of Chromatography A 897, 295-305.
38. Moldovan, Z., and Bayona, J. M. (2000) Determination of novel aromatic amines in environmental samples by gas chromatography/mass spectrometry, Rapid Communications in Mass Spectrometry 14, 379-389.
39. Ábalos, M., Bayona, J. M., and Ventura, F. (1999) Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters, Analytical chemistry 71, 3531-3537.
40. Kovács, Á., Simon-Sarkadi, L., and Ganzler, K. (1999) Determination of biogenic amines by capillary electrophoresis, Journal of Chromatography A 836, 305-313.
41. Mardones, C., Arce, L., Rios, A., and Valcárcel, M. (1998) Determination of heterocyclic aromatic amines in fried beefsteak, meat extract, and fish by capillary zone electrophoresis, Chromatographia 48, 700-706.
42. Farkas, S., and Hajós, G. (1998) Monitoring of biologically active amines in cereals and cereal based food products by HPLC, Chromatographia 48, 37-42.
43. Cobo, M., and Silva, M. (1999) Continuous solid-phase extraction and dansylation of low-molecular-mass amines coupled on-line with liquid chromatography and peroxyoxalate chemiluminescence-based detection, Journal of Chromatography A 848, 105-115.
44. Liu, H.-Y., Lin, S.-L., and Fuh, M.-R. (2016) Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry, Talanta 150, 233-239.
45. Zhang, Z., Feng, M., Zhu, K., Han, L., Sapozhnikova, Y., and Lehotay, S. J. (2016) Multiresidue analysis of pesticides in straw roughage by liquid chromatography–tandem mass spectrometry, Journal of agricultural and food chemistry 64, 6091-6099.
46. Simpson, N. J. (2000) Solid-phase extraction: principles, techniques, and applications, CRC press.
47. El Atrache, L. L., Sabbah, S., and Morizur, J. P. (2005) Identification of phenyl-N-methylcarbamates and their transformation products in Tunisian surface water by solid-phase extraction liquid chromatography–tandem mass spectrometry, Talanta 65, 603-612.
48. Wang, C., Zhang, Z., Shen, Y., Tian, Z., Xu, D., and Han, C. (2015) Determination of validamycin A in agricultural food samples by solid-phase extraction combined with liquid chromatography–atmospheric pressure chemical ionisation–tandem mass spectrometry, Food chemistry 169, 150-155.
49. Han, J., Liu, Y., Wang, R., Yang, J., Ling, V., and Borchers, C. H. (2014) Metabolic profiling of bile acids in human and mouse blood by LC–MS/MS in combination with phospholipid-depletion solid-phase extraction, Analytical chemistry 87, 1127-1136.
50. Gustavson, K., DeVita, W., Revis, A., and Harkin, J. (2000) Novel use of a dual-zone restricted access sorbent: normal-phase solid-phase extraction separation of methyl oleate from polynuclear aromatic hydrocarbons stemming from semi-permeable membrane devices, Journal of Chromatography A 883, 143-149.
51. Wu, Y.-L., Chen, R.-X., Xue, Y., Yang, T., Zhao, J., and Zhu, Y. (2014) Simultaneous determination of amantadine, rimantadine and memantine in chicken muscle using multi-walled carbon nanotubes as a reversed-dispersive solid phase extraction sorbent, Journal of Chromatography B 965, 197-205.
52. Payanan, T., Leepipatpiboon, N., and Varanusupakul, P. (2013) Low-temperature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection, Food chemistry 141, 2720-2726.
53. Shen, J. X., Motyka, R. J., Roach, J. P., and Hayes, R. N. (2005) Minimization of ion suppression in LC–MS/MS analysis through the application of strong cation exchange solid-phase extraction (SCX-SPE), Journal of pharmaceutical and biomedical analysis 37, 359-367.
54. Elian, A. A., and Hackett, J. (2011) Anion exchange SPE and liquid chromatography–tandem mass spectrometry in GHB analysis, Journal of Chromatography B 879, 3752-3758.
55. Schenck, F., and Hobbs, J. (2004) Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis, Bulletin of Environmental Contamination and Toxicology 73, 24-30.
56. Lesueur, C., Knittl, P., Gartner, M., Mentler, A., and Fuerhacker, M. (2008) Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method, Food Control 19, 906-914.
57. Frenich, A. G., Romero-González, R., Gómez-Pérez, M. L., and Vidal, J. L. M. (2011) Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry, Journal of Chromatography A 1218, 4349-4356.
58. Harris, D. C. (2010) Quantitative chemical analysis, Macmillan.
59. Fenn, J. (2002) Electrospray ionization mass spectrometry: how it all began, Journal of biomolecular techniques: JBT 13, 101.
60. Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons, Analytical chemistry 60, 2299-2301.
61. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules, Science 246, 64-71.
62. Ikonomou, M. G., Blades, A. T., and Kebarle, P. (1991) Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas, Journal of the American Society for Mass Spectrometry 2, 497-505.
63. Dooley, K. C. (2003) Tandem mass spectrometry in the clinical chemistry laboratory, Clinical biochemistry 36, 471-481.
64. El-Aneed, A., Cohen, A., and Banoub, J. (2009) Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers, Applied Spectroscopy Reviews 44, 210-230.
65. Hagman, C., Ramström, M., Håkansson, P., and Bergquist, J. (2004) Quantitative analysis of tryptic protein mixtures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Journal of proteome research 3, 587-594.
66. El-Hawiet, A., Kitova, E. N., and Klassen, J. S. (2013) Quantifying protein interactions with isomeric carbohydrate ligands using a catch and release electrospray ionization-mass spectrometry assay, Analytical chemistry 85, 7637-7644.
67. Li, H., Wolff, J. J., Van Orden, S. L., and Loo, J. A. (2013) Native top-down electrospray ionization-mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, Analytical chemistry 86, 317-320.
68. Morrison, J. (1991) Personal reminiscences of forty years of mass spectrometry in Australia, Organic Mass Spectrometry 26, 183-194.
69. Yost, R., and Enke, C. (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation, MICHIGAN STATE UNIV EAST LANSING DEPT OF CHEMISTRY.
70. Moret, S., Conte, L., and Callegarin, F. (1996) Determination of biogenic amines in fish and meat foods, INDUSTRIE ALIMENTARI 35, 650-657.
71. Chang, Y. W., Nguyen, H. P., Chang, M., Burket, S. R., Brooks, B. W., and Schug, K. A. (2015) Determination of nicotine and its metabolites accumulated in fish tissue using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry, Journal of separation science 38, 2414-2422.
72. Ma, Y., Hashi, Y., Ji, F., and Lin, J. M. (2010) Determination of phthalates in fruit jellies by dispersive SPE coupled with HPLC‐MS, Journal of separation science 33, 251-257.
73. Lehotay, S. J., Tully, J., Garca, A. V., Contreras, M., Mol, H., Heinke, V., Anspach, T., Lach, G., Fussell, R., and Mastovska, K. (2007) Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study, Journal of AOAC International 90, 485-520.
74. Malhat, F. M., and Mahmoud, H. A. (2012) Dissipation and residues of mandipropamid in grape using QuEChERS methodology and HPLC-DAD, ISRN Analytical Chemistry 2012.
電子全文 電子全文(網際網路公開日期:20220803)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔