|
[1] J. E. Kelley, "The critical-path method: Resources planning and scheduling," Industrial Scheduling, vol. 13, pp. 347-365, 1963. [2] S. Hartmann and D. Briskorn, "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, vol. 207, pp. 1-14, 2010. [3] P. Czyzżak and A. Jaszkiewicz, "Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization," Journal of Multi‐Criteria Decision Analysis, vol. 7, pp. 34-47, 1998. [4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002. [5] N. Srinivas and K. Deb, "Muiltiobjective optimization using nondominated sorting in genetic algorithms," Evolutionary Computation, vol. 2, pp. 221-248, 1994. [6] F. Ballestín and R. Blanco, "Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems," Computers & Operations Research, vol. 38, pp. 51-62, 2011. [7] Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Transactions on Evolutionary Computation, vol. 11, pp. 712-731, 2007. [8] S. Hartmann and R. Kolisch, "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, vol. 127, pp. 394-407, 2000. [9] E. W. Davis and J. H. Patterson, "A comparison of heuristic and optimum solutions in resource-constrained project scheduling," Management Science, vol. 21, pp. 944-955, 1975. [10] R. Alvarez-Valdés and J. M. Tamarit, "Heuristic algorithms for resource-constrained project scheduling: A review and an empirical analysis," in Advances in Project Scheduling. vol. 9, ed: Elsevier Amsterdam, 1989, pp. 113-134. [11] R. Kolisch, "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, vol. 90, pp. 320-333, 1996. [12] R. Zamani, "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, vol. 229, pp. 552-559, 2013. [13] D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke, "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, vol. 169, pp. 638-653, 2006. [14] Ş. İ. Birbil and S.-C. Fang, "An electromagnetism-like mechanism for global optimization," Journal of Global Optimization, vol. 25, pp. 263-282, 2003. [15] J. Xiao, Z. Wu, X.-X. Hong, J.-C. Tang, and Y. Tang, "Integration of electromagnetism with multi-objective evolutionary algorithms for RCPSP," European Journal of Operational Research, vol. 251, pp. 22-35, 2016. [16] K. Li and R. Willis, "An iterative scheduling technique for resource-constrained project scheduling," European Journal of Operational Research, vol. 56, pp. 370-379, 1992. [17] V. Valls, F. Ballestı́n, and S. Quintanilla, "Justification and RCPSP: A technique that pays," European Journal of Operational Research, vol. 165, pp. 375-386, 2005. [18] R. Kolisch, A. Sprecher, and A. Drexl, "Characterization and Generation of a General Class of Resource-constrained Project Scheduling Problems," Management Science, vol. 41, pp. 1693-1703, 1995. [19] S. Hartmann, "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), vol. 45, pp. 733-750, 1998. [20] F. Ballestin, V. Valls, and S. Quintanilla, "Due dates and RCPSP," in Perspectives in Modern Project Scheduling. vol. 92, ed: Springer, 2006, pp. 79-104. [21] F. Ballestín and R. Blanco, "A hybrid genetic algorithm with transmitted justification for the RCPSP with due dates," BEIO, Boletín de Estadística e Investigación Operativa, vol. 30, pp. 125-149, 2014. [22] M. P. Hansen, "Tabu search for multiobjective optimization: MOTS," in Proceedings of the 13th International Conference on Multiple Criteria Decision Making, 1997, pp. 574-586. [23] A. Viana and J. P. de Sousa, "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, vol. 120, pp. 359-374, 2000. [24] M. A. Al-Fawzan and M. Haouari, "A bi-objective model for robust resource-constrained project scheduling," International Journal of Production Economics, vol. 96, pp. 175-187, 2005. [25] B. Abbasi, S. Shadrokh, and J. Arkat, "Bi-objective resource-constrained project scheduling with robustness and makespan criteria," Applied Mathematics and Computation, vol. 180, pp. 146-152, 2006. [26] L. Wang, C. Fang, C.-D. Mu, and M. Liu, "A Pareto-archived estimation-of-distribution algorithm for multiobjective resource-constrained project scheduling problem," IEEE Transactions on Engineering Management, vol. 60, pp. 617-626, 2013. [27] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm: Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK), 2001. [28] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach," IEEE Transactions on Evolutionary Computation, vol. 3, pp. 257-271, 1999. [29] V. Valls, F. Ballestin, and S. Quintanilla, "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, vol. 185, pp. 495-508, 2008. [30] S. Khalili, A. A. Najafi, and S. T. A. Niaki, "Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: two meta-heuristic algorithms," The International Journal of Advanced Manufacturing Technology, vol. 69, pp. 617-626, 2013. [31] P.-C. Chang, S.-H. Chen, and K.-L. Lin, "Two‐phase sub population genetic algorithm for parallel machine-scheduling problem," Expert Systems with Applications, vol. 29, pp. 705-712, 2005. [32] J. K. Cochran, S.-M. Horng, and J. W. Fowler, "A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines," Computers & Operations Research, vol. 30, pp. 1087-1102, 2003. [33] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, "Adaptive replacement strategies for MOEA/D," IEEE Transactions on Cybernetics, vol. 46, pp. 474-486, 2016. [34] R. Kolisch and A. Sprecher, "PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program," European Journal of Operational Research, vol. 96, pp. 205-216, 1996. [35] E. Zitzler and L. Thiele, "Multiobjective optimization using evolutionary algorithms—a comparative case study," in International Conference on Parallel Problem Solving from Nature, 1998, pp. 292-301. [36] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, "Performance assessment of multiobjective optimizers: an analysis and review," IEEE Transactions on Evolutionary Computation, vol. 7, pp. 117-132, 2003. [37] M. Fleischer, "The Measure of Pareto Optima. Applications to Multi-objective Metaheuristics," in Evolutionary Multi-Criterion Optimization: Second International Conference, EMO 2003, Faro, Portugal, April 8–11, 2003. Proceedings, C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 519-533. [38] G. Minella, R. Ruiz, and M. Ciavotta, "A review and evaluation of multiobjective algorithms for the flowshop scheduling problem," INFORMS Journal on Computing, vol. 20, pp. 451-471, 2008.
|