(3.235.108.188) 您好!臺灣時間:2021/02/28 00:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭皓心
研究生(外文):Cheng, Hao-Hsin
論文名稱:基於word2vec的發散思維測驗之自動化評分技術發展
論文名稱(外文):Developing an Automated Scoring Technique for Divergent Thinking Tests Based on word2vec
指導教授:張國恩張國恩引用關係宋曜廷宋曜廷引用關係劉子鍵劉子鍵引用關係
指導教授(外文):Chang, Kuo-EnSung, Yao-TingLiu, Tzu-Chien
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:資訊教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:創造力測驗發散思維測驗語意距離word2vec
外文關鍵詞:creativity testdivergent thinking testsemantic distanceword2vec
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目次
中文摘要 i
英文摘要 ii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 5
第三節 名詞釋義 5
第二章 文獻回顧 8
第一節 創造力的涵義 8
第二節 聯結理論 11
第三節 創造力的測量 14
第四節 發散思維測驗 16
第五節 word2vec 24
第三章 系統設計 27
第一節 系統架構 27
第二節 流暢力指標自動化計分模組設計 29
第三節 獨創力指標自動化計分模組設計 30
第四節 變通力指標自動化計分模組設計 35
第四章 研究方法 38
第一節 研究架構與流程 38
第二節 研究參與者 39
第三節 研究工具 39
第四節 資料分析 43
第五章 研究結果 44
第一節 信度分析 44
第二節 效度分析 52
第六章 討論、結論與建議 61
第一節 討論 61
第二節 結論 64
第三節 建議 66
參考資料 68
附錄一 75
附錄二 78
附錄三 81
附錄四 83
一、中文文獻
王坤(2015)。基於數據庫的非常規用途測驗計分法(碩士論文)。取自http://cdmd.cnki.com.cn/Article/CDMD-10269-1015352129.htm
吳靜吉(1998)。新編創造思考測驗研究。教育部輔導工作六年計畫研究報告。
林緯倫、連韻文、任純慧(2005)。想得多是想得好的前提嗎?探討發散性思考能力在創意問題解決的角色。中華心理學刊,47(3),211-227。
張春興(1996)。教育心理學。台北:東華。
陳光華(2012)。圖書館學與資訊科學大辭典。取自http://terms.naer.edu.tw/detail/1679016/

二、英文文獻
Acar, S., & Runco, M. A. (2014). Assessing associative distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26(2), 229-238. doi: 10.1080/10400419.2014.901095
Altszyler, E., Sigman, M., & Slezak, D. F. (2016). Comparative study of LSA vs Word2vec embeddings in small corpora: a case study in dreams database. Retrieved from http://arxiv.org/abs/1610.01520
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186-1197. doi: 10.3758/s13421-014-0428-8
Beketayev, K., & Runco, M. A. (2016). Scoring Divergent Thinking Tests by Computer With a Semantics-Based Algorithm. Europe's Journal of Psychology, 12(2), 210-220. doi:10.5964/ejop.v12i2.1127
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick's model on creativity‐related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47(4), 273-289. doi: 10.1002/jocb.35
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6(3), 273-281. doi: 10.1037/a0027059
Bossomaier, T., Harré, M., Knittel, A., & Snyder, A. (2009). A semantic network approach to the creativity quotient (CQ). Creativity Research Journal,21(1), 64-71. doi: 10.1080/10400410802633517
Chang, T. H., Sung, Y. T., & Lee, Y. T. (2012). A Chinese word segmentation and POS tagging system for readability research. Paper presented at 42nd annual meeting of the Society for Computers in Psychology (SCiP 2012), Minneapolis, MN.
Cheung, P. C., & Lau, S. (2010). Gender differences in the creativity of Hong Kong school children: Comparison by using the new electronic Wallach–Kogan creativity tests. Creativity Research Journal, 22(2), 194-199. doi: 10.1080/10400419.2010.481522
Cheung, P. C., Lau, S., Chan, D. W., &Wu, W. Y. H. (2004). Creative potential of school children in Hong Kong: Norms of the Wallach–Kogan Creativity Tests and their implications. Creativity Research Journal, 16, 69-78. doi: 10.1207/s15326934crj1601_7
Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407
Dumas, D., & Dunbar, K. N. (2014). Understanding Fluency and Originality: A latent variable perspective. Thinking Skills and Creativity, 14, 56-67. doi: 10.1016/j.tsc.2014.09.003
Forster, E. A., & Dunbar, K. N. (2009, July). Creativity evaluation through latent semantic analysis. In N. A. Taatgen & H. van Rijn (Eds), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 602-7). Austin, TX: Cognitive Science Society.
Green, A. E., Cohen, M. S., Kim, J. U., & Gray, J. R. (2012). An explicit cue improves creative analogical reasoning. Intelligence, 40(6), 598-603. doi: 10.1016/j.intell.2012.08.005
Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53(4), 267-293. doi: 10.1037/h0040755
Guilford, J. P. (1966). Measurement and creativity. Theory Into Practice, 5(4), 185-189. doi: 10.1080/00405846609542023
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
Hass, R. W. (2015). Feasibility of online divergent thinking assessment. Computers in Human Behavior, 46, 85-93. doi: 10.1016/j.chb.2014.12.056
Hass, R. W. (2016). Tracking the dynamics of divergent thinking via semantic distance: Analytic methods and theoretical implications. Memory & Cognition, 1-12. doi: 10.3758/s13421-016-0659-y
Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13(1), 1-12. doi: 10.1037/a0013688
Kerr, B., & Gagliardi, C. (2003). Measuring creativity in research and practice. In S. J. Lopez, & C. R. Snyder (Eds.), Positive psychological assessment: A handbook of models and measures (pp. 155-169). Washington, DC: American Psychological Association.
Kwon, M., Goetz, E. T., & Zellner, R. D. (1998). Developing a Computer‐Based TTCT: Promises and Problems. The Journal of Creative Behavior, 32(2), 96-106.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240. doi: 10.1037/0033-295X.104.2.211
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2-3), 259-284. doi: 10.1080/01638539809545028
Lau, S., & Cheung, P. C. (2010a). Creativity assessment: Comparability of the electronic and paper-and-pencil versions of the Wallach–Kogan Creativity Tests. Thinking Skills and Creativity, 5(3), 101-107. doi: 10.1016/j.tsc.2010.09.04
Lau, S., & Cheung, P. C. (2010b). Developmental trends of creativity: What twists of turn do boys and girls take at different grades?. Creativity Research Journal, 22(3), 329-336. doi: 10.1080/10400419.2010.503543
Lehman, H. C. (1953). Age and achievement. Princeton, NJ: Princeton.
Luo, J., Wang, Q., & Li, Y. (2014, July). Word clustering based on word2vec and semantic similarity. In Proceedings of the 33rd Chinese Control Conference (pp. 517-521). Piscataway, NJ: IEEE. doi: 10.1109/ChiCC.2014.6896677
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281-297). Berkeley, University of California Press.
Mednick, S. A. (1962). The associative basis of creative process. Psychological Review, 69, 220-232.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. In Proceedings of workshop at ICLR.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Proceedings of neural information processing systems (pp. 3111-3119).
Mikolov, T., Yih, W.-t., & Zweig, G. (2013c). Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: Human language technologies (pp. 746-751). Association for Computational Linguistics.
Palaniappan, A. K. (2012). Web-based Creativity Assessment System. International Journal of Information and Education Technology, 2(3), 255-258.
Pásztor, A., Molnár, G., & Csapó, B. (2015). Technology-based assessment of creativity in educational context: the case of divergent thinking and its relation to mathematical achievement. Thinking Skills and Creativity, 18, 32-42. doi: 10.1016/j.tsc.2015.05.004
Plucker, J. A., & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In R. J. Sternberg (Eds.), Handbook of creativity (pp. 35-61). New York: Cambridge University Press.
Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single word utterances to assess creative cognition. Behavior Research Methods, 46(3), 641-659. doi: 10.3758/s13428-013-0401-7
Pretz, J. E., & Link, J. A. (2008). The Creative Task Creator: A tool for the generation of customized, Web-based creativity tasks. Behavior Research Methods, 40(4), 1129-1133. doi: 10.3758/BRM.40.4.1129
Ranjan, A., & Srinivasan, N. (2010). Dissimilarity in creative categorization. The Journal of Creative Behavior, 44(2), 71-83.
Runco, M. A. (2007). Creativity: theories and themes: research, development, and practice. Boston, MA : Elsevier Academic.
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66-75. doi: 10.1080/10400419.2012.652929
Smith, K. A., Huber, D. E., & Vul, E. (2013). Multiply-constrained semantic search in the Remote Associates Test. Cognition, 128(1), 64-75. doi: 10.1016/j.cognition.2013.03.001
Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11-21.
Sung, Y.T., Chang, T.H., Lin, W.C., Hsieh, K.S., and Chang, K.E. (2016). CRIE: An automated analyzer for Chinese texts. Behavior Research Methods, 48(4):1238-1251. doi:10.3758/s13428-015-0649-1
Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, NJ: Prentice-Hall.
Torrance, E. P. (1974). Torrance Tests of Creative Thinking: Norms-Technical Manual. Lexington, MA: Ginn.
Torrance, E. P. (1988). The nature of creativity as manifest in its testing. In R. J. Sternberg (Eds.), The nature of creativity (pp. 43-75). Cambridge: Cambridge University Press.
Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children. New York: Holt, Rinehart, & Winston.
Wang, P., Xu, B., Xu, J., Tian, G., Liu, C. L., & Hao, H. (2016). Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing, 174, 806-814. doi: 10.1016/j.neucom.2015.09.096
Xue, B., Fu, C., & Shaobin, Z. (2014). A study on sentiment computing and classification of sina weibo with word2vec. In 2014 IEEE International Congress on Big Data bigdatacongress Big Data (BigData Congress) (pp. 358-363). Piscataway, NJ: IEEE. doi: 10.1109/BigData.Congress.2014.59
Zhang, D., Xu, H., Su, Z., & Xu, Y. (2015). Chinese comments sentiment classification based on word2vec and SVM perf. Expert Systems with Applications, 42(4), 1857-1863. doi: 10.1016/j.eswa.2014.09.011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔