1. F. Bonaccorso, J. Coraux, C. Ewels, G. Fiori, A. Ferrari, J. Gabriel, M. Garcia-Hernandez, J. Kinaret, M. Lemme, and D. Neumaier, "Graphene position paper," E-Nano Newsletter Special Issue, 2011.
2. H. Choi, H. Kim, S. Hwang, M. Kang, D. W. Jung, and M. Jeon, "Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition," Scripta Materialia, Vol. 64, pp. 601-604, 2011.
3. S. Chen, P. Chen, and Y. Wang, "Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries," Nanoscale, Vol. 3, pp. 4323-9, 2011.
4. N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi, and J. S. Park, "Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors," Adv Mater, Vol. 25, pp. 6854-8, 2013.
5. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene," Advanced Functional Materials, Vol. 21, pp. 1338-1354, 2011.
6. B. Garg, T. Bisht, and Y. C. Ling, "Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective," Molecules, Vol. 19, pp. 14582-14614, 2014.
7. E. S. Polsen, "Robust synthesis and continuous manufacturing of carbon nanotube forests and graphene films," 3566212 Ph.D., University of Michigan, Ann Arbor, 2013.
8. http://www.meijo-nano.com/en/applications/use.html
9. G. M. Jenkins and K. Kawamura, " Polymeric carbons: carbon fibre, glass and char," London: Cambridge University Press, 1976.
10. E. Franklin, "Homogeneous and Heterogeneous Graphitization of Carbon," Nature, Vol. 177, pp.239-239, 1956.
11. S. Ergun, V. H. Tiensuu, "Alicyclic structures in coals," Nature, Vol.183, pp. 1668-1670, 1959.
12. D. F. R. Mildner and J. M. Carpenter, "On the short range atomic structure of non-crystalline carbon," Journal of non-crystalline Solids, Vol.47, pp. 391-402, 1982.
13. G. M. Jenkins, K. Kawamura and L. L. Ban, "Formation and structure of polymeric carbons," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 327, No. 1571, 1972.
14. P. J. F. Harris, "Fullerene-related structure of commercial glassy carbons," Philosophical Magazine, Vol. 84, pp. 3159-3167, 2004.
15. S. Sharma, A. Sharma, Y. K.Cho and M. Madou, "Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms," ACS applied materials & interfaces, Vol. 4, pp. 34-39, 2012.
16. C. Wang, G. Jia, L.H. Taherabadi and M.J. Madou, "A novel method for the fabrication of high-aspect ratio C-MEMS structures," Journal of microelectromechanical systems, Vol. 14, pp. 348-358, 2005.
17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang and S.K. Banerjee, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, pp. 1312-1314, 2009.
18. L. Meng, Z. Wang, J. Jiang, Y. Yang and J. Wang, "Defect healing of chemical vapor deposition graphene growth by metal substrate step," The Journal of Physical Chemistry C, Vol. 117, pp. 15260-15265, 2013.
19. C. Gong, M. Acik, R.M. Abolfath, Y. Chabal and K. Cho, "Graphitization of graphene oxide with ethanol during thermal reduction," The Journal of Physical Chemistry C, Vol. 116, pp. 9969-9979, 2012.
20. J.H. Chu, J. Kwak, S.-D. Kim, M.J. Lee, J.J. Kim, S. Park, J.-K. Choi, G.H. Ryu, K. Park, S.Y. Kim, J.H. Kim, Z. Lee, Y.-W. Kim and S.-Y. Kwon, "Monolithic graphene oxide sheets with controllable composition," Nature communications, Vol. 5, pp. 3383, 2014.
21. A. Li, S. Zhang, B. Reznik, S. Lichtenberg, G. Schoch and O. Deutschmann, "Chemistry and kinetics of chemical vapor deposition of pyrolytic carbon from ethanol," Proceedings of the Combustion Institute, Vol. 33, pp. 1843-1850, 2011.
22. P.M. Silenko, A.N. Shlapak, V.P. Afanas’ev, "Chemical vapor deposition of pyrolytic carbon on SiC Fibers," Inorganic materials, Vol. 42, pp. 287-291, 2006.
23. Y. Lim, J.-I. Heo, M. Madou and H. Shin, "Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform," Nanoscale research letters, Vol. 8, pp. 492, 2013.
24. K. Malladi, C. Wang and M. Madou, "Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis," Carbon, Vol. 44, pp. 2602-2607, 2006.
25. Y. Lim, Y. Lee, J.-I. Heo and H. Shin, "Highly sensitive hydrogen gas sensor based on a suspended palladium/carbon nanowire fabricated via batch microfabrication processes," Sensors and Actuators B: Chemical, Vol. 210, pp. 218-224, 2015.
26. Y. Lim, J.-I. Heo and H. Shin, "Fabrication and application of a stacked carbon electrode set including a suspended mesh made of nanowires and a substratebound planar electrode toward for an electrochemical/biosensor platform," Sensors and Actuators B: Chemical, Vol. 192, pp. 796-803, 2014.
27. G. Aichmayr, G.S. Duesberg, F. Kreupl, S. Kudelka, M. Liebau, A. Saenger,J. Schumann and O. Storbeck, "Carbon/high-k trench capacitor for the 40 nm DRAM generation," In VLSI Technology, 2007 IEEE Symposium on IEEE, pp. 186-187, 2007.
28. F. Kreupl, R. Bruchhaus, P. Majewski, J.B. Philipp, R. Symanczyk, T. Happ, C. Arndt, M. Vogt, R. Zimmermann, A. Buerke, A.P. Graham and M. Kund, "Carbonbased resistive memory," In Electron Devices Meeting 2008 IEEE International, pp. 1-4, 2008.
29. G. Raghavan, J.L. Hoyt and J.F. Gibbons, "Polycrystalline carbon: a novel material forgate electrodes in MOS technology," Japanese journal of applied physics, Vol. 32, pp. 380-383, 1993.
30. A.P. Graham, G. Schindler, G.S. Duesberg, T. Lutz and W. Weber, "An investigation of the electrical properties of pyrolytic carbon in reduced dimensions: vias and wires," Journal of Applied Physics, Vol. 107, 114316, 2010.
31. J. L. Xie, C. X. Guo, and C. M. Li, "Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage," Energy & Environmental Science, Vol. 7, pp. 2559-2579, 2014.
32. A. N. Pal and A. Ghosh, "Ultralow noise field-effect transistor from multilayer graphene," Applied Physics Letters, vol. 95, 2009.
33. 劉志毅,吳奕寬,張駿晟和曾永華,"從超薄石墨膜至原子層石墨烯:光電特性及應用",真空科技,26版,25-34頁,2013年。34. M. S. Dresselhaus and G. Dresselhaus, "Intercalation compounds of graphite," Advances in Physics, Vol. 51, pp. 1-186, 2002.
35. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, "Production and processing of graphene and 2d crystals," Materials Today, Vol. 15, pp. 564-589, 2012.
36. M. Noel and R. Santhanam, "Electrochemistry of graphite intercalation compounds," Journal of Power Sources, Vol. 72, pp. 53-65, 1998.
37. H. P. Boehm, R. Setton, and E. Stumpp, "Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994)," in Pure and Applied Chemistry, Vol. 66, ed, p. 1893, 1994.
38. 何歡,"氯化鐵-NiCl-GICs的製備,插層過程及還原工藝的研究",湖南大學碩士論文,2008年。
39. 胡憲霖,翁震灼,黃振東"高導熱柔性石墨片之發展與應用," 工業材料雜誌,239期,119-126頁,2011年。40. N. Usha, V. R. K. Murthy, and J. Sobhanadri, "Optical and Low-Frequency Conductivity Measurements on Pure and Mixed Stages of Graphite-Ferric Chloride Intercalation Compound," Materials Science and Engineering B-Solid State Materials for Advanced Technology, Vol. 33, pp. 212-216, 1995.
41. D. M. Ottmers and H. F. Rase, "Potassium Graphites Prepared by Mixed-Reaction Technique," Carbon, Vol. 4, pp. 125, 1966.
42. N. Iwashita and M. Inagaki, "Potential survey of intercalation of sulfuric acid into graphite by chemical oxidation," Synthetic Metals, Vol. 34, pp. 139-144, 1989.
43. V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, "X-Ray-Investigation of Highly Saturated Li-Graphite Intercalation Compound," Carbon, Vol. 33, pp. 177-181, 1995.
44. 稻垣道夫,大谷杉郎,大谷朝男和賴耿陽,碳材料碳纖維工學,復漢出版社,2000。
45. W. Zhao, P. H. Tan, J. Liu, and A. C. Ferrari, "Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability," J Am Chem Soc, Vol. 133, pp. 5941-6, 2011.
46. G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, "Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage," Nano Lett, Vol. 8, pp. 3166-70, 2008.
47. 趙冬梅,"石墨烯/奈米碳管複合材料的製備及應用進展",化學學報,72版,185頁,2014。
48. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, and J. M. Tour, "3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance," Nano Lett, Vol. 13, pp. 72-8, 2013.
49. P. Dong, Y. Zhu, J. Zhang, F. Hao, J. Wu, S. Lei, H. Lin, R. H. Hauge, J. M. Tour, and J. Lou, "Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells," J. Mater. Chem. A, Vol. 2, pp. 20902-20907, 2014.
50. X. Zhu, G. Q. Ning, Z. J. Fan, J. S. Gao, C. M. Xu, W. Z. Qian, and F. Wei, "One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles," Carbon, Vol. 50, pp. 2764-2771, 2012.
51. K. Youn-Su, K. Kitu, T. F. Frank, and Y. Eui-Hyeok, "Out-of-plane growth of CNTs on graphene for supercapacitor applications," Nanotechnology, Vol. 23, pp. 015301, 2012.
52. S. M. Shinde, G. Kalita, S. Sharma, R. Papon, M. Z. Yusop, and M. Tanemura, "Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source," RSC Advances, Vol. 4, pp. 13355-13360, 2014.
53. Y. T. Shih, K. Y. Lee, and Y. S. Huang, "Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene," Applied Surface Science, Vol. 294, pp. 29-35, 2014.
54. R. H. Rao, G. G. Chen, L. M. R. Arava, K. Kalaga, M. Ishigami, T. F. Heinz, P. M. Ajayan, and A. R. Harutyunyan, "Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes," Scientific Reports, Vol. 3, 2013.
55. D. D. Nguyen, N. H. Tai, S. Y. Chen, and Y. L. Chueh, "Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters," Nanoscale, Vol. 4, pp. 632-8, 2012.
56. S. W. Hong, F. Du, W. Lan, S. Kim, H. S. Kim, and J. A. Rogers, "Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene," Adv Mater, Vol. 23, pp. 3821-6, 2011.
57. H. C. Chang, C. C. Li, S. F. Jen, C. C. Lu, I. Y. Y. Bu, P. W. Chiu, and K. Y. Lee, "All-carbon field emission device by direct synthesis of graphene and carbon nanotube," Diamond and Related Materials, Vol. 31, pp. 42-46, 2013.
58. S. S. Li, Y. H. Luo, W. Lv, W. J. Yu, S. D. Wu, P. X. Hou, Q. H. Yang, Q. B. Meng, C. Liu, and H. M. Cheng, "Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells," Advanced Energy Materials, Vol. 1, pp. 486-490, 2011.
59. C. Srinivasan and R. Saraswathi, "Covalently bonded carbon nanotube–graphene hybrid material," CURRENT SCIENCE, Vol. 104, p. 166, 2013.
60. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, "Preparation of Tunable 3D Pillared Carbon Nanotube–Graphene Networks for High-Performance Capacitance," Chemistry of Materials, Vol. 23, pp. 4810-4816, 2011.
61. L. L. Zhang, Z. Xiong, and X. S. Zhao, "A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance," Journal of Power Sources, Vol. 222, pp. 326-332, 2013.
62. H. J. Huang, H. Q. Chen, D. P. Sun, and X. Wang, "Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells," Journal of Power Sources, Vol. 204, pp. 46-52, 2012.
63. U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, G. H. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, "Graphene/carbon nanotube hybrid-based transparent 2D optical array," Adv Mater, Vol. 23, pp. 3809-14, 2011.
64. H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, "Activation energy paths for graphene nucleation and growth on Cu," ACS Nano, Vol. 6, pp. 3614-23, 2012.
65. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, "Model of carbon nanotube growth through chemical vapor deposition," Chemical Physics Letters, Vol. 315, pp. 25-30, 1999.
66. C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, Vol. 21, p. 3324, 2011.
67. K. Wieczorek-Ciurowa and A. J. Kozak, "The Thermal Decomposition of Fe(NO3)3·9H2O," Journal of Thermal Analysis and Calorimetry, Vol. 58, pp. 647-651, 1999.
68. X. Li, G. X. Zhu, and Z. Xu, "Nitrogen-doped carbon nanotube arrays grown on graphene substrate," Thin Solid Films, Vol. 520, pp. 1959-1964, 2012.
69. A. Kovalenko, J. Jouhannaud, P. Polavarapu, M. P. Krafft, G. Waton, and G. Pourroy, "Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles," Soft Matter, Vol. 10, pp. 5147-56, 2014.
70. J. Robertson, "Diamond-like amorphous carbon." Materials Science and Engineering: R: Reports, Vol. 37, pp. 129-281, 2002.