|
[1] Transparency Market Research [2] C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen , “Short-pulse laser ablation of solid targets,” Optics Communications, vol. 129, pp. 134-142, 1996. [3] F. C. Lucas, C. Florian, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, “Precise surface modification of polymethyl-methacrylate with near-infrared femtosecond laser ,” Applied surface science, vol. 336, pp. 170-175, 2015. [4] T. L. Chang, Z. C. Chen, W. Y. Chen, H. C. Han, S. F. Tseng, “Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses ,” Microelectronic Engineering, vol. 158, pp. 1-5, 2016. [5] V. Kohlschütter, P. Haenni, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure,” Zeitschrift für anorganische und allgemeine Chemie, vol. 158, pp. 121-144, 1919. [6] A. K. Geim,K. S. Novoselov, “The rise of graphene,” Nature materials, vol. 6, pp. 183-191, 2007. [7] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, “Transfer of CVD-Grown monolayer graphene onto arbitrary substrates,” Acs nano, vol. 5, pp. 6916-6924, 2011. [8] S. Ghosh, D. L. Nika, E. P. Pokatilov, A. A. Balandin, “Heat conduction in graphene: experimental study and theoretical interpretation,” New Journal of Physics, vol. 11, no.095012, 2009. [9] Y. Yang, R. Murali, “Impact of size effect on graphene nanoribbon transport,” IEEE electron device letters, vol. 31, pp. 237-239, 2010. [10] K. Y. Shin, J. Y. Hong, J. Jang, “Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application,” Advanced materials, vol. 23, pp. 2113-2118, 2011. [11] Y. Si, E. T. Samulski, “Exfoliated graphene separated by platinum nanoparticles,” American Chemical Society, vol. 20, pp. 6792-6797, 2008. [12] Y. H. Kim , C. Sachse , M. L. Machala , C. May , L. M. Meskamp , K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-Free organic solar cells,” Advance functional materials, vol. 21, pp. 1076-1081, 2011. [13] G. F. Wang, X. M. Tao, R. X. Wang, “Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites,” Composites Science and Technology, vol. 68, pp. 2837-2841, 2008. [14] J. H. Cook, H. A. Al-Attar, A. P. Monkman, “Effect of PEDOT–PSS resistivity and work function on PLED performance,” Organic Electronics, vol. 15, pp. 245-250, 2014. [15] J. M. Yun, J. S. Yeo, J. Kim, H.G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Advance materials, vol. 23, pp. 4923-4928, 2011. [16] Y. J. Lin, J. Y. Lee, S. M. Chen, “Changing electrical properties of PEDOT:PSS by incorporating with dimethyl sulfoxide,” Chemical Physics Letters, vol. 664, pp. 213-218, 2016. [17] J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, “Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films,” International Journal of Photoenergy, vol. 2009, 2009. [18] A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Mӧller, G. Dräger, B. Chichkov, “Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering”, Biomacromolecules, vol. 12, pp. 851-858, 2011. [19] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, vol. 14, pp. 1-7 , 2014. [20] C. C. Yang, H.Y. Tsai, C. C. Yang, W. T. Hsiao, K. C. Huang, “Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation,” Applied Physics A, vol. 117, pp. 69-75, 2014. [21] V. Kekkonen, S. Chaudhuri, Fergus Clarke, J. Kaisto,J. Liimatainen, S. K. Pandian, J. Piirto, M. Siltanen, A. Zolotukhin, “Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications," Applied Physics A, Articlenumber: 122:233, pp. 232-233, 2016. [22] I. Nikolaou, “ Inkjet-Printed graphene oxide thin layers on love wave devices for humidity and vapor detection”, IEEE Sensors Journal, vol. 16, 2016. [23] M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine, “Graphene-based wireless bacteria detection on tooth enamel”, Nature communications, vol. 3, Article number: 1767, 2011. [24] M. Assar, R. Karimzadeh,“Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, vol. 483, pp. 275-280, 2016. [25] Z. Ye, H. Tai, R. Guo, Z. Yuan, C. Liu, Y. Su, Z. Chen, Y. Jiang, “Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology”, Applied Surface Science, vol. 419, pp. 84-90, 2017. [26] A. Phongphut, C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranontb,S. Prichanont, P. Sritongkham, “A disposable amperometric biosensor based on inkjet-printed Au/PEDOT:PSS nanocomposite for triglyceride determination”, Sensors and Actuators B: Chemical, vol. 178, pp. 501-507, 2013. [27] P. G. Raj, V. S. Rani, A. Kanwat, J. Jang, “Enhanced organic photovolvoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping”, Materials Research Bulletin, vol. 74, pp. 346-352, 2016. [28] A. Wong, A. M. Santos, O. Fatibello-Filho, “Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS”, Journal of Electroanalytical Chemistry, vol. 799, pp. 547-555, 2017. [29] J. Niu , D. Yang , X. Ren , Z. Yang, Y. Liu, X. Zhu ,W Zhao, S. F. Liu, “Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell”, Organic Electronics, vol. 48, pp. 165-171, 2017. [30] C. Ling, Q. Xue, Z. Han, H. Lu, F. Xia, Z. Yan, L. Deng, “Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions”, Sensors and Actuators B: Chemical , vol. 227, pp. 438-447, 2016. [31] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané, “Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical , vol. 235, pp. 525-534, 2016. [32] R. Kumar, D.K. Avasthi, A. Kaur, “Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature”, Sensors and Actuators B: Chemica , vol. 242, pp. 461-468, 2017. [33] S.M. Jebreiil Khadem, Y. Abdi, S. Darbari, F. Ostovari, “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors,” Current Applied Physics, vol. 14, pp. 1498-1503, 2014. [34] J. M. Azzarelli, K. A. Mirica, J. B. Ravnsbæk, T. M. Swager, “Wireless gas detection with a smartphone via RF communication,” PNAS, vol. 111, pp. 18162-18166, 2014. [35] V. Srivastava, K. Jain, “At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor,” Materials Letters, vol. 169, pp. 28-32, 2015. [36] M. S. Park, K. H. Kim, M.J. Kim, Y. S. Lee, “NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 490, pp. 104-109 , 2016 [37] T. Kavinkumar, S. Manivannan, “Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection,” Ceramics International, vol. 42, pp. 1769-1776, 2016. [38] C. L. Hsu, L. F. Chang, T. J. Hsueh,“ Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature ”, Sensors and Actuators B: Chemical , Vol. 249, pp. 265-277, 2017. [39]. Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, C. Wongchoosu, “Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene”, Applied Surface Science, vol. 404, pp. 357-363, 2017. [40]. C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, X. Li, A. Cao, “A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film”, Applied Surface Science, vol. 405, pp. 405-411,2017.
|