(44.192.112.123) 您好!臺灣時間:2021/03/07 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:甘鎧榕
研究生(外文):Gan, Kai-Rong
論文名稱:以皮秒雷射多孔薄膜元件技術於氣體檢測之研製與實現
論文名稱(外文):Development and Implement of Porous Thin-film Device Technique for Gas Detection Using Picosecond Laser Irradiation
指導教授:張天立張天立引用關係
指導教授(外文):Chang Tien-Li
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:石墨烯薄膜電極超快雷射皮秒雷射氣體檢測
外文關鍵詞:GrapheneThin-film electrodesUltrafast laserPicosecond laserGas detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
總目錄 iv
圖目錄 vi
表目錄 xii
第一章 緒論 1
1.1 研究背景與緒論 1
1.2 雷射簡介 2
1.3 氣體感測器簡介 3
1.4 石墨烯簡介 4
1.5 PEDOT:PSS簡介 5
第二章 文獻回顧 9
2.1 雷射原理與加工機簡介 9
2.2 雷射直寫製程 9
2.3 石墨烯材料應用 10
2.4 PEDOT:PSS材料應用 11
2.5 氣體感測器應用 12
第三章 研究方法與設計 31
3.1 實驗設計 31
3.2 石墨烯試片製作 31
3.3 多孔材料電極製作 32
3.4 雷射加工製造 33
3.4.1雷射加工能量密度 34
3.4.2雷射加工之重疊率與脈衝數 34
3.5 氣體感測器設計與製作 36
3.6 氣體感測器腔體製作 36
3.7 電性量測分析 36
3.8 氣體感測晶片量測分析 38
3.9 實驗與量測設備 38
第四章 研究結果與討論 52
4.1 石墨烯薄膜分析 52
4.1.1旋轉塗佈石墨烯表面形貌分析 52
4.1.2石墨烯薄膜與氧化還原石墨烯拉曼光譜 53
4.2 石墨烯多孔材料之電極設計與製作 53
4.2.1雷射加工剝離閥值 53
4.2.2海綿多孔材料之電極設計與製作 55
4.2.3氣體感測器之設計 56
4.3 電性與氣體反應檢測分析 56
4.3.1於氣體之電性與阻抗檢測分析 56
第五章 結論 78
5.1 結論 78
5.2 建議與未來展望 79
參考文獻 80
[1] Transparency Market Research
[2] C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen , “Short-pulse laser ablation of solid targets,” Optics Communications, vol. 129, pp. 134-142, 1996.
[3] F. C. Lucas, C. Florian, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, “Precise surface modification of polymethyl-methacrylate with near-infrared femtosecond laser ,” Applied surface science, vol. 336, pp. 170-175, 2015.
[4] T. L. Chang, Z. C. Chen, W. Y. Chen, H. C. Han, S. F. Tseng, “Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses ,” Microelectronic Engineering, vol. 158, pp. 1-5, 2016.
[5] V. Kohlschütter, P. Haenni, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure,” Zeitschrift für anorganische und allgemeine Chemie, vol. 158, pp. 121-144, 1919.
[6] A. K. Geim,K. S. Novoselov, “The rise of graphene,” Nature materials, vol. 6, pp. 183-191, 2007.
[7] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, “Transfer of CVD-Grown monolayer graphene onto arbitrary substrates,” Acs nano, vol. 5, pp. 6916-6924, 2011.
[8] S. Ghosh, D. L. Nika, E. P. Pokatilov, A. A. Balandin, “Heat conduction in graphene: experimental study and theoretical interpretation,” New Journal of Physics, vol. 11, no.095012, 2009.
[9] Y. Yang, R. Murali, “Impact of size effect on graphene nanoribbon transport,” IEEE electron device letters, vol. 31, pp. 237-239, 2010.
[10] K. Y. Shin, J. Y. Hong, J. Jang, “Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application,” Advanced materials, vol. 23, pp. 2113-2118, 2011.
[11] Y. Si, E. T. Samulski, “Exfoliated graphene separated by platinum nanoparticles,” American Chemical Society, vol. 20, pp. 6792-6797, 2008.
[12] Y. H. Kim , C. Sachse , M. L. Machala , C. May , L. M. Meskamp , K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-Free organic solar cells,” Advance functional materials, vol. 21, pp. 1076-1081, 2011.
[13] G. F. Wang, X. M. Tao, R. X. Wang, “Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites,” Composites Science and Technology, vol. 68, pp. 2837-2841, 2008.
[14] J. H. Cook, H. A. Al-Attar, A. P. Monkman, “Effect of PEDOT–PSS resistivity and work function on PLED performance,” Organic Electronics, vol. 15, pp. 245-250, 2014.
[15] J. M. Yun, J. S. Yeo, J. Kim, H.G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Advance materials, vol. 23, pp. 4923-4928, 2011.
[16] Y. J. Lin, J. Y. Lee, S. M. Chen, “Changing electrical properties of PEDOT:PSS by incorporating with dimethyl sulfoxide,” Chemical Physics Letters, vol. 664, pp. 213-218, 2016.
[17] J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, “Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films,” International Journal of Photoenergy, vol. 2009, 2009.
[18] A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Mӧller, G. Dräger, B. Chichkov, “Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering”, Biomacromolecules, vol. 12, pp. 851-858, 2011.
[19] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, vol. 14, pp. 1-7 , 2014.
[20] C. C. Yang, H.Y. Tsai, C. C. Yang, W. T. Hsiao, K. C. Huang, “Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation,” Applied Physics A, vol. 117, pp. 69-75, 2014.
[21] V. Kekkonen, S. Chaudhuri, Fergus Clarke, J. Kaisto,J. Liimatainen, S. K. Pandian, J. Piirto, M. Siltanen, A. Zolotukhin, “Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications," Applied Physics A, Articlenumber: 122:233, pp. 232-233, 2016.
[22] I. Nikolaou, “ Inkjet-Printed graphene oxide thin layers on love wave devices for humidity and vapor detection”, IEEE Sensors Journal, vol. 16, 2016.
[23] M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine, “Graphene-based wireless bacteria detection on tooth enamel”, Nature communications, vol. 3, Article number: 1767, 2011.
[24] M. Assar, R. Karimzadeh,“Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, vol. 483, pp. 275-280, 2016.
[25] Z. Ye, H. Tai, R. Guo, Z. Yuan, C. Liu, Y. Su, Z. Chen, Y. Jiang, “Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology”, Applied Surface Science, vol. 419, pp. 84-90, 2017.
[26] A. Phongphut, C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranontb,S. Prichanont, P. Sritongkham, “A disposable amperometric biosensor based on inkjet-printed Au/PEDOT:PSS nanocomposite for triglyceride determination”, Sensors and Actuators B: Chemical, vol. 178, pp. 501-507, 2013.
[27] P. G. Raj, V. S. Rani, A. Kanwat, J. Jang, “Enhanced organic photovolvoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping”, Materials Research Bulletin, vol. 74, pp. 346-352, 2016.
[28] A. Wong, A. M. Santos, O. Fatibello-Filho, “Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS”, Journal of Electroanalytical Chemistry, vol. 799, pp. 547-555, 2017.
[29] J. Niu , D. Yang , X. Ren , Z. Yang, Y. Liu, X. Zhu ,W Zhao, S. F. Liu, “Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell”, Organic Electronics, vol. 48, pp. 165-171, 2017.
[30] C. Ling, Q. Xue, Z. Han, H. Lu, F. Xia, Z. Yan, L. Deng, “Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions”, Sensors and Actuators B: Chemical , vol. 227, pp. 438-447, 2016.
[31] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané, “Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical , vol. 235, pp. 525-534, 2016.
[32] R. Kumar, D.K. Avasthi, A. Kaur, “Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature”, Sensors and Actuators B: Chemica , vol. 242, pp. 461-468, 2017.
[33] S.M. Jebreiil Khadem, Y. Abdi, S. Darbari, F. Ostovari, “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors,” Current Applied Physics, vol. 14, pp. 1498-1503, 2014.
[34] J. M. Azzarelli, K. A. Mirica, J. B. Ravnsbæk, T. M. Swager, “Wireless gas detection with a smartphone via RF communication,” PNAS, vol. 111, pp. 18162-18166, 2014.
[35] V. Srivastava, K. Jain, “At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor,” Materials Letters, vol. 169, pp. 28-32, 2015.
[36] M. S. Park, K. H. Kim, M.J. Kim, Y. S. Lee, “NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 490, pp. 104-109 , 2016
[37] T. Kavinkumar, S. Manivannan, “Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection,” Ceramics International, vol. 42, pp. 1769-1776, 2016.
[38] C. L. Hsu, L. F. Chang, T. J. Hsueh,“ Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature ”, Sensors and Actuators B: Chemical , Vol. 249, pp. 265-277, 2017.
[39]. Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, C. Wongchoosu, “Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene”, Applied Surface Science, vol. 404, pp. 357-363, 2017.
[40]. C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, X. Li, A. Cao, “A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film”, Applied Surface Science, vol. 405, pp. 405-411,2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔