(54.236.58.220) 您好!臺灣時間:2021/02/27 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊京叡
研究生(外文):Yang, Ching-Jui
論文名稱:以慣性感測器測量疲勞前後跳躍動作著地時足部變化
論文名稱(外文):Using Inertial Sensor to Measure The Foot Biomechanical Changes When Landing.
指導教授:相子元相子元引用關係
指導教授(外文):Shiang, Tzyy-Yuang
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:運動競技學系
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:35
中文關鍵詞:動作分析踝關節足部運動傷害陀螺儀加速規
外文關鍵詞:Motion analysisAnkleFootSports injuryGyroscopeAccelerometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:利用陀螺儀了解疲勞前後跳躍著地時足部動作參數的變化。方法:本實驗招募12名健康女性,在熱身後收取3次疲勞前下蹲跳數據後進行疲勞誘發運動處理程序,達到疲勞後收取3次疲勞後下蹲跳數據。利用動作分析系統了解著地瞬間踝關節角度並用慣性感測器了解著地瞬間加速度值與蹠骨動作角速度值及著地緩衝期加速度與角速度第一極值與傾角變化量,並以皮爾森相關係數了解陀螺儀及動作分析系統測得之蹠骨角速度值的相關性及魏克生符號檢定比較疲勞前後的結果。結果:著地緩衝期中,慣性感測器與動作分析系統測得之蹠骨角速度值之相關性在三個平面動作上皆有高度相關 (背屈/蹠屈:r=0.977;內翻/外翻:r=0.993;內收/外展:r=0.956)。疲勞後著地瞬間踝關節外展角度顯著增加 (疲勞前:-9.39±5.48度,疲勞後:-11.80±4.32度;p=.033)、前後方向加速度值由向前顯著改變為向後(疲勞前:-0.25±0.46 G,疲勞後:0.25±0.69 G;p=.033)且外翻角速度顯著增加 (疲勞前:-57.20±45.20度/秒,疲勞後:-118.68±52.66度/秒;p=.016)。著地後的向外側的加速度極值 (疲勞前:-0.80±0.27 G,疲勞後:-1.07±0.23 G;p=.016)及外翻角速度極值 (疲勞前:-78.92±33.73度/秒,疲勞後:-127.33±50.60度/秒;p=.050)顯著增加,緩衝期的外翻角度變化量顯著增加 (疲勞前:-0.76±5.91度,疲勞後:-4.44±4.72度;p=.021)。結論:放置在足部的慣性感測器可偵測到疲勞前後足部動作變化,而足部外翻角速度的變化可發展為疲勞指數的參數。
Purpose: To investigate if IMU is suitable to measure the biomechanical changes of foot after fatigue and find the parameter of foot fatigue index when landing. Methods: There were 12 female subjects recruited in this study. Foot kinematic parameters were collected by accelerometer, gyro sensor, and 3D motion analysis system. Pearson’s correlation coefficient was used to assess the correlation between the data of angular velocity collected from gyro sensor and motion analysis system, and the Wilcoxon Signed Ranked Test was used to compare the data before and after a fatigue protocol. Results: There were significant correlations between the data of angular velocity collected from gyro sensor and motion analysis system. When landing, ankle abduction angle and angular velocity in the eversion increased significantly after a fatigue protocol, and the acceleration changed from anterior to posterior after a fatigue protocol. The first peak value of acceleration after landing was significantly increased in lateral axis after a fatigue protocol. The first peak value of angular velocity in the eversion after landing was significantly increased, and it was also changed in dorsiflexion/ plantarflexion and adduction/abduction, but not significantly after a fatigue protocol. Inclination angle in the eversion was significantly increased, and the others were changed but not significantly after a fatigue protocol. Conclusion: The IMU on the foot could detect the biomechanical changes after fatigue, and the changes of angular velocity in eversion which is detected from IMU could be used as one of the parameter of foot fatigue index.
中文摘要.................i
英文摘要.................ii
目次.....................iii
表次.....................iv
圖次.....................iv


第壹章 緒論.....................1
第一節 研究背景..................1
第二節 研究問題..................3
第三節 研究目的..................4
第四節 研究假設..................4
第五節 研究限制..................4
第六節 名詞操作定義..............5
第七節 研究之重要性..............5


第貳章 文獻探討..................6
第一節 疲勞對運動表現及運動傷害的影響....6
第二節 疲勞對著地時下肢生物力學的影響....8
第三節 足部動作對下肢近端關節的影響......11
第四節 第四節 IMU與動作分析............11


第參章 研究方法...................13
第一節 研究對象...................13
第二節 測量儀器與設備..............13
第三節 實驗步驟...................16
第四節 資料收集與分析..............18
第五節 統計分析...................21


第肆章 結果.......................22
第一節 慣性感測器蹠骨角速度之效度檢驗....22
第二節 著地瞬間足部疲勞前後動作比較......24
第三節 著地後緩衝期足部動作疲勞前後比較..25


第五章 討論與結論..................27
第一節 討論.......................27
第二節 結論.......................29


引用文獻.............................30
附錄一:實驗參與者須知................33
附錄二、實驗參與者同意書..............34
附錄三、實驗參與者基本資料表..........35
Arai, T., Obuchi, S., Shiba, Y., Omuro, K., Nakano, C., & Higashi, T. (2008). The feasibility of measuring joint angular velocity with a gyro-sensor. Arch Phys Med Rehabil, 89(1), 95-99. doi:10.1016/j.apmr.2007.07.051
Bahr, R., Karlsen, R., Lian, O., & Ovrebo, R. V. (1994). Incidence and mechanisms of acute ankle inversion injuries in volleyball. A retrospective cohort study. Am J Sports Med, 22(5), 595-600.
Chappell, J. D., Herman, D. C., Knight, B. S., Kirkendall, D. T., Garrett, W. E., & Yu, B. (2005). Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med, 33(7), 1022-1029. doi:10.1177/0363546504273047
Cheung, R. T. H., & Ng, G. Y. F. (2007). Efficacy of motion control shoes for reducing excessive rearfoot motion in fatigued runners. Physical Therapy in Sport, 8(2), 75-81. doi:https://doi.org/10.1016/j.ptsp.2006.12.002
Chu, V. W., Fong, D. T., Chan, Y. Y., Yung, P. S., Fung, K. Y., & Chan, K. M. (2010). Differentiation of ankle sprain motion and common sporting motion by ankle inversion velocity. J Biomech, 43(10), 2035-2038. doi:10.1016/j.jbiomech.2010.03.029
Cortes, N., Quammen, D., Lucci, S., Greska, E., & Onate, J. (2012). A functional agility short-term fatigue protocol changes lower extremity mechanics. J Sports Sci, 30(8), 797-805. doi:10.1080/02640414.2012.671528
Decker, M. J., Torry, M. R., Wyland, D. J., Sterett, W. I., & Richard Steadman, J. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon), 18(7), 662-669.
Devita, P., & Skelly, W. A. (1992). . Med Sci Sports Exerc, 24(1), 108-115.
Gutierrez, G. M., Jackson, N. D., Dorr, K. A., Margiotta, S. E., & Kaminski, T. W. (2007). Effect of fatigue on neuromuscular function at the ankle. J Sport Rehabil, 16(4), 295-306.
Hetsroni, I., Finestone, A., Milgrom, C., Ben-Sira, D., Nyska, M., Mann, G., . . . Ayalon, M. (2008). The role of foot pronation in the development of femoral and tibial stress fractures: a prospective biomechanical study. Clin J Sport Med, 18(1), 18-23. doi:10.1097/JSM.0b013e31815ed6bf
Ibata, Y., Kitamura, S., Motoi, K., & Sagawa, K. (2013). Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors. Conf Proc IEEE Eng Med Biol Soc, 2013, 4891-4894. doi:10.1109/embc.2013.6610644
Ishida, T., Yamanaka, M., Takeda, N., Homan, K., Koshino, Y., Kobayashi, T., . . . Aoki, Y. (2015). The effect of changing toe direction on knee kinematics during drop vertical jump: a possible risk factor for anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc, 23(4), 1004-1009. doi:10.1007/s00167-013-2815-2
Jarning, J. M., Mok, K. M., Hansen, B. H., & Bahr, R. (2015). Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sports Biomech, 14(1), 95-105. doi:10.1080/14763141.2015.1027950
Johnston, R. B., 3rd, Howard, M. E., Cawley, P. W., & Losse, G. M. (1998). Effect of lower extremity muscular fatigue on motor control performance. Med Sci Sports Exerc, 30(12), 1703-1707.
Kim, H., Son, S., Seeley, M. K., & Hopkins, J. T. (2015). Functional Fatigue Alters Lower-extremity Neuromechanics during a Forward-side Jump. Int J Sports Med, 36(14), 1192-1200. doi:10.1055/s-0035-1550050
Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R., & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture, 25(3), 453-462. doi:10.1016/j.gaitpost.2006.05.017
Lin, C. F., Lee, W. C., Chen, Y. A., & Hsue, B. J. (2016). Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe. J Appl Biomech, 32(4), 350-358. doi:10.1123/jab.2014-0263
Madigan, M. L., & Pidcoe, P. E. (2003). Changes in landing biomechanics during a fatiguing landing activity. J Electromyogr Kinesiol, 13(5), 491-498.
Magnusdottir, A., Thornorgilsson, B., & Karlsson, B. (2014). Comparing three devices for jump height measurement in a heterogeneous group of subjects. J Strength Cond Res, 28(10), 2837-2844. doi:10.1519/jsc.0000000000000464
McCarthy, M. M., Voos, J. E., Nguyen, J. T., Callahan, L., & Hannafin, J. A. (2013). Injury profile in elite female basketball athletes at the Women's National Basketball Association combine. Am J Sports Med, 41(3), 645-651. doi:10.1177/0363546512474223
Miura, K., Ishibashi, Y., Tsuda, E., Okamura, Y., Otsuka, H., & Toh, S. (2004). The effect of local and general fatigue on knee proprioception. Arthroscopy, 20(4), 414-418. doi:10.1016/j.arthro.2004.01.007
Nicol, C., Avela, J., & Komi, P. V. (2006). The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue. Sports Med, 36(11), 977-999.
Padua, D. A., Arnold, B. L., Perrin, D. H., Gansneder, B. M., Carcia, C. R., & Granata, K. P. (2006). Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J Athl Train, 41(3), 294-304.
Peng, H. T., Chen, W. C., Kernozek, T. W., Kim, K., & Song, C. Y. (2015). Influences of Patellofemoral Pain and Fatigue in Female Dancers during Ballet Jump-Landing. Int J Sports Med, 36(9), 747-753. doi:10.1055/s-0035-1547220
Quagliarella, L., Sasanelli, N., Belgiovine, G., Moretti, L., & Moretti, B. (2010). Evaluation of standing vertical jump by ankles acceleration measurement. J Strength Cond Res, 24(5), 1229-1236. doi:10.1519/JSC.0b013e3181cb281a
Rahnama, N., Reilly, T., & Lees, A. (2002). Injury risk associated with playing actions during competitive soccer. Br J Sports Med, 36(5), 354-359.
Riemann, B. L., & Lephart, S. M. (2002). The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J Athl Train, 37(1), 80-84.
Saltzman, C. L., & Nawoczenski, D. A. (1995). Complexities of Foot Architecture as a Base of Support. Journal of Orthopaedic & Sports Physical Therapy, 21(6), 354-360. doi:10.2519/jospt.1995.21.6.354
Shih, Y., Ho, C. S., & Shiang, T. Y. (2014). Measuring kinematic changes of the foot using a gyro sensor during intense running. J Sports Sci, 32(6), 550-556. doi:10.1080/02640414.2013.843013
Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., & Yoshinari, S. (2009). Gait posture estimation using wearable acceleration and gyro sensors. J Biomech, 42(15), 2486-2494. doi:10.1016/j.jbiomech.2009.07.016
Tamura, A., Akasaka, K., Otsudo, T., Sawada, Y., Okubo, Y., Shiozawa, J., . . . Yamada, K. (2016). Fatigue Alters Landing Shock Attenuation During a Single-Leg Vertical Drop Jump. Orthop J Sports Med, 4(1), 2325967115626412. doi:10.1177/2325967115626412
Tran, A. A., Gatewood, C., Harris, A. H., Thompson, J. A., & Dragoo, J. L. (2016). The effect of foot landing position on biomechanical risk factors associated with anterior cruciate ligament injury. J Exp Orthop, 3(1), 13. doi:10.1186/s40634-016-0049-1
Wikstrom, E. A., Powers, M. E., & Tillman, M. D. (2004). Dynamic Stabilization Time After Isokinetic and Functional Fatigue. J Athl Train, 39(3), 247-253.
Yang, C., Lee, E., Hwang, E. H., Kwon, O., & Lee, J. H. (2016). Management of Sport Injuries with Korean Medicine: A Survey of Korean National Volleyball Team. Evid Based Complement Alternat Med, 2016, 8639492. doi:10.1155/2016/8639492
李育銘, & 李恒儒. (2013). 在躍起著地時誘發疲勞運動對下肢關節和地面反作用力的影響. [The Influences of Fatigue Induced Exercise on Lower Extremity Joint and Ground Reaction Force during Landing from a Jump]. 華人運動生物力學期刊(8), 1-8.
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔