跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕仁
研究生(外文):Lin, Yi-Ren
論文名稱:飼料中以不同水解蛋白源取代魚粉蛋白對金目鱸成長及免疫反應之影響
論文名稱(外文):The effects of replacement of fish meal protein by different protein hydrolysates on the growth performances and immune parameters of Asian seabass (Lates calcarifer)
指導教授:沈士新沈士新引用關係
指導教授(外文):Sheen, Shyn-Shin
口試委員:冉繁華朱建宏沈士新
口試委員(外文):Nan, Fan-HuaChu, Jen-HongSheen, Shyn-Shin
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:金目鱸(Lates calcarifer)魚粉取代水解蛋白大豆粉
外文關鍵詞:protein hydrolysatefish meal replacementAsian seabassLates calcarifer
相關次數:
  • 被引用被引用:3
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文以水解魚蛋白(FPH)、水解大豆蛋白(SPH)、水解大豆蛋白與大豆粉1:1(w:w)混合物(SPHSB)探討飼料中取代不同魚粉蛋白比例對金目鱸的成長及免疫反應影響。
實驗一:以FPH分別取代魚粉蛋白0% (FPH0)、5% (FPH5)、10% (FPH10)、15% (FPH15)、20% (FPH20)之飼料,投餵初重0.91g ± 0.01g的金目鱸,實驗進行6週。飼料粗蛋白、粗油脂分別為50.12-51.59%、10.93-11.79%。金目鱸增重率以餵食飼料FPH5組有最高增重率,與控制組、FPH10、FPH20組無顯著差異,顯著高於FPH15組。O2–產生率在FPH5組顯著高於控制組、FPH10、FPH15、FPH20組;FPH20組有最低O2–產生率,顯著低於控制組、FPH5、FPH10組,與FPH15組無顯著差異。SOD活性各組無顯著差異。
實驗二:以SPH分別取代魚粉蛋白0% (SPH0)、10% (SPH10)、20% (SPH20)、30% (SPH30)、40% (SPH40)、50% (SPH50)之飼料,投餵初重0.43g ± 0.01g金目鱸,實驗進行6週。飼料粗蛋白、粗油脂分別為47.50-48.17%、14.82-15.29%。金目鱸最佳增重率為餵食飼料SPH30組,顯著高於控制組、SPH10、SPH20、SPH40、SPH50組,與SPH20組無顯著差異;SPH10、SPH20、SPH40、SPH50則與控制組無顯著差異;而O2–產生率部分控制組最高,與SPH10、SPH20和SPH30組無顯著差異,SPH40和SPH50組顯著低於SPH10和控制組;而SPH20、SPH30、SPH40、SPH50組之間無顯著差異。SOD活性各組皆無顯著差異。
實驗三:以SPHSB分別取代魚粉蛋白0%(SPHSB0)、10%(SPHSB10)、20%(SPHSB20)、30%(SPHSB30)、40%(SPHSB40)、50%(SPHSB50)之飼料,投餵初重0.36g ± 0.00g金目鱸,實驗進行6週。飼料粗蛋白、粗油脂分別為44.88-45.97%、11.17-12.78%。金目鱸最佳增重率為餵食飼料SPHSB10組,顯著高於SPHSB30、SPHSB40、SPHSB50組,與控制組、SPHSB20組無顯著差異;SPHSB40、SPHSB50組顯著低於SPHSB10、SPHSB20、SPHSB30和控制組;O2–產生率在SPHSB20組最高,與SPHSB30、SPHSB40組無顯著差異,顯著高於控制組、SPHSB10、SPHSB50組;而SPHSB10、SPHSB30、SPHSB40、SPHSB50組與控制組無顯著差異。SOD活性各組間無顯著差異。
This study investigated the effects of replacement of fishmeal protein with fish protein hydrolysate (FPH), soybean protein hydrolysate (SPH), soybean protein hydrolysate and soybean meal mixture (SPHSB) on the growth performance and immune parameters of Asian seabass, Lates calcarifer.
In experiment I, 0.91 g fish were fed five isonitrogenous (50%) and isolipidic (11%) diets containing FPH to replace 0% (FPH0), 5% (FPH5), 10% (FPH10), 15% (FPH15) and 20% (FPH20) of fish meal protein for 6 weeks. The triplicate groups of fish were fed three times a day ad lib. The weight gain of fish fed FPH5 was significantly higher than that of fish fed FPH15. The weight gain of fish fed FPH5 had no significant differences from that of fish fed FPH0, FPH10 and FPH20. The fish fed FPH5 had significantly higher superoxide anion (O2 -) production ratio than those fed other treatments. The SOD activity of fish showed no significant difference among treatments.
In experiment II, 0.43 g fish were fed six isonitrogenous (48%) and isolipidic (15%) diets containing SPH to replace 0% (SPH0), 10% (SPH10), 20% (SPH20), 30% (SPH30), 40% (SPH40) and 50% (SPH50) of fish meal protein for 6 weeks. The triplicate groups of fish were fed three times a day ad lib. The weight gain of fish fed SPH30 was significantly higher than that of fish fed other treatments except SPH20. The weight gain of fish fed SPH0 had no significant difference from that of fish fed SPH10, SPH20, SPH40 and SPH50. The fish fed SPH40 and SPH50 had significantly lower superoxide anion (O2 -) production ratio than those fed other treatments. The SOD activity showed no significant differences among treatments.
In experiment III, 0.36 g fish were fed six isonitrogenous (45%) and isolipidic (12%) diets containing SPHSB to replace 0% (SPHSB0), 10% (SPHSB10), 20% (SPHSB20), 30% (SPHSB30), 40% (SPHSB40) and 50% (SPHSB50) of fish meal protein for 6 weeks. The triplicate groups of fish were fed three times a day ad lib. The weight gain of fish fed SPHSB10 was significantly higher than that of fish fed SPHSB30, SPHSB40 and SPHSB50. The weight gain of fish fed SPHSB10 had no significant differences from that of fish fed SPHSB0 and SPHSB20. The fish fed SPHSB20 had significantly higher superoxide anion (O2 -) production ratio than those fed SPHSB0, SPHSB10, SPHSB50.The superoxide anion (O2 -) production ratio of fish fed SPHSB20 showed no significant difference from that of fish fed SPHSB30 and SPHSB40.The SOD activity of fish showed no significant difference among treatments.
謝辭......................................................I
摘要.....................................................II
Abstract................................................III
List of Tables...........................................VI
前言......................................................1
文獻整理..................................................2
1.金目鱸分類及介紹.........................................2
2.蛋白質..................................................5
3.蛋白水解物..............................................6
4.魚類非特異免疫..........................................9
5.水解物作為免疫刺激物應用.................................10
材料方法..................................................11
一、實驗動物..............................................11
二、實驗設計..............................................11
三、實驗飼料..............................................12
四、魚體採樣及收集.........................................12
五、粗成份分析............................................13
六、免疫分析..............................................14
七、成長參數..............................................15
八、統計分析..............................................15
結果.....................................................16
討論.....................................................19
結論.....................................................24
參考文獻..................................................25
中華民國台灣地區漁業統計年報,2015。行政院農委會漁業署。

李愛杰,1998。水產動物營養與飼料學。水產出版社。365頁。

肖克宇,鄧時銘,向建國,劉曉燕,陳昌福,陳光榮,何福林,鐘蕾,譚周進,
湛嘉,2007。水產動物免疫與應用。科學出版社。404頁。

黃君毅,2015。飼料中使用去脂和全脂蛆蟲粉取代魚粉蛋白對點帶石斑魚成長之
影響。國立臺灣海洋大學水產養殖學系碩士學位論文。39頁。

許世承,2013。金目鱸魚生產醫學與疾病。水產動物防疫簡訊,第19期。

張賜玲,2010。鱸魚養殖要點。行政院農委會漁業署漁業資訊服務網 http://www.fa.gov.tw/

陳念岐,2015。飼養溫度對金目鱸(Lates calcarifer) 幼魚成長表現、攝食量及體組成之影響。國立屏東科技大學水產養殖系碩士學位論文。47頁。

陳俊廷,2014。飼料中不同水解魚蛋白與酵母粉對點帶石斑成長及活存之影響。國立臺灣海洋大學水產養殖學系碩士學位論文。47頁。

陳彥如,2007。飼料中不同大豆蛋白源取代魚粉對白蝦成長的影響。國立臺灣海洋大學水產養殖學系碩士學位論文。59頁。

陳悠里,2001。幾丁聚醣和其衍生物對馬拉巴石斑魚免疫能力的影響。國立中山大學海洋生物研究所碩士論文。83頁。

陳慈棻,2003。蛋白酶水解脫脂大豆粉及其水解液特性分析。國立臺灣海洋大學食品科學系碩士學位論文。98頁。

蔡宜樺,2011。飼料中添加蒼术粗原料及濃縮製劑對金目鱸成長及非特異性免疫反應的影響。國立臺灣海洋大學水產養殖學系碩士學位論文。82頁。

Adler-Nissen, J., 1986. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers, New York, 427 pp.

Ai, Q., Mai, K., Tan, B., Xu, W., Duan, Q., Ma, H., Zhang, L., 2006. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea. Aquaculture 260, 255-263.

Aksnes, A., Hope, B., Høstmark, Ø., Albrektsen, S., 2006. Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture 261, 1102-1110.

AOAC (Association of Official Analysis Chemists), 1984. Official Methods of Analysis, 14th edition, AOAC, Arlington, VA, 1141 pp.

Arndt, R.E., Hardy, R.W., Sugiura, S.H., Dong, F.M., 1999. Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon, Oncorhynchus kisutch. Aquaculture 180, 129-145.

Aung, H.L., Chu, J.H., Sheen, S.S., 2015. Partial replacement of fish meal by protorsan meal for spotted grouper juvenile, Epinephelus coioides. Journal of The Fisheries Society of Taiwan42, 199-207.

Azarm, H. M., Lee, S.M., 2014. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquaculture Research 45, 994-1003

Bau, H.M., Villaume, C., Lin, C.F., Evrard, J., Quemener, B., Nicolas, J.P., Mkjean, L., 1994. Effect of a solid-state fermentation using rhizopus oligosporus sp.t-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal. Journal of the Science of Food and Agriculture 65, 315-322.

Berge, G.M., Storebakken, T., 1996. Fish protein hydrolyzate in starter diets for Atlantic salmon ( Salmo salar) fry. Aquaculture 145, 205-212.

Bernhart, F.W., Tomarelli, R.M., 1966. A salt mixture supplying the national research council estimates of the mineral requirements of the rat. Journal of Nutrition 89, 495-500.

Binh, T.Q., Chu, J.H., Sheen, S.S., 2015. The effect of dietary supplemental tilapia protein hydrolysate on the growth performance of orange-spotted grouper Epinephelus coioides. Journal of The Fisheries Society of Taiwan 42, 169-177.

Binh, T.Q., Chu, J.H., Sheen, S.S., 2016. The effect of partial replacement of fish meal by soy protein hydrolysate on growth performance of Orange-Spotted Grouper Epinephelus coioides. Journal of The Fisheries Society of Taiwan 43, 11-19.

Bøgwald, J., Dalmo, R.A., Leifson, R.M., Stenberg, E., Gildberg, A., 1996. The stimulatory effect of a muscle protein hydrolysate from Atlantic cod,Gadus morhua L., on Atlantic salmon,Salmo salar L., head kidney leucocytes. Fish and Shellfish Immunology 6, 3-16.

Boonyaratpalin, M., Boonyaratpalin, S., Supamataya, K., 1994a. Ascorbyl-phosphate-Mg as a dietary vitamin C sources for seabass (Lates calcarifer). In: Chou, L.M., Munro, A.D., Lam, T.J., Chen, T.W., Cheong, L.K.K., Ding, J.K., Hooi, K.K., Phang, V.P.E., Shim, K.F. & Tan, C.H. (Eds), The Third Asian Fisheries Forum, Asian Fisheries Society, Manila, Philippines, pp. 725-728.

Boonyaratpalin, M., Phongmaneerat, J., 1990. Requirement of seabass for dietary phosphorus. Technical Paper No. 4, National Institute of Coastal Aquaculture, Department of Fisheries, Thailand, 20 pp.

Boonyaratpalin, M., Suraneiranat, P., Tunpibal, T., 1998. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture 161, 67-78.

Boonyaratpalin, M., Unprasert, N., Buranapanidgit, J., 1989. Optimal supplementary vitamin C level in seabass fingerling diet. In: Takeda, M., Watanabe, T. (Eds), The Current Status of Fish Nutrition in Aquaculture, Tokyo University of Fisheries, Tokyo, Japan, pp. 149-157.

Boonyaratpalin, M., Wanokowat, J., 1993. Effect of thiamine, riboflavin , pantothenic acid and inositol on growth, feed efficiency and mortality of juvenile seabass. In: Kaushik, S.J., Luget, P. (Eds), Fish Nutrition in Practice, Biarritz, France, pp. 819-828.

Boonyaratpalin, M., Wanokowat, J., Hangsapreurke, K., 1994b. Pantothenic acid requirement of seabass. In:De Silva, S.S. (Eds), Fish Nutrition Research, Asian Fisheries Society Special Publication 9, Asian Fisheries Society, Manila, the Philippines, pp. 23-30.

Bui, H.T.D., Khosravi, S., Fournier, V., Herault, M., Lee, K.J., 2014. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 418-419, 11-16.

Cahu, C.L., Zambonino Infante, J.L., Quazuguel, P., Le Gall, M.M., 1999. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture 171, 109-119.

Cai, Z., Li, W., Mai, K., Xu, W., Zhang, Y., Ai, Q., 2015. Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture 440, 40-47.

Catacutan, M.R., Coloso, R.M., 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 131, 125-133.

Catacutan, M.R., Coloso, R.M., 1997. Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels. Aquaculture 149, 137-144.

Catacutan, M.R., Pagador, G.E., 2004. Partial replacement of fishmeal by defatted soybean meal in formulated diets for the mangrove red snapper Lutjanus argentimaculatus (Forsskal 1775). Aquaculture Research 35, 299-306.


Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., Jyothirmayi, T., 2012. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry 135, 3020-3038.

Chen, L.C., 1990. Aquaculture in Taiwan. Fishing News Books, London, 273 pp.

Cheng, W., Lin, Y.H., 2015. Effect of dietary fish meal replacement by Lactobacillus spp. fermented soybean meal on growth performance of asian sea bass, Lates calcarifer. Journal of The Fisheries Society of Taiwan 42, 235-240.

Choi, S.M., Wang, X., Park, G.J., Lim, S.R., Kim, K.W., Bai, S.C., Shin, I.S., 2004. Dietary dehulled soybean meal as a replacement for fish meal in fingerling and growing olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquaculture Research 35, 410-418.

Deng, J., Mai, K., Ai, Q., Zhang, W., Wang, X., Xu, W., Liufu, Z., 2006. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 258, 503-513.

Drew, M.D., Borgeson, T.L., Thiessen, D.L., 2007. A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology 138, 118-136.

Espe, M., Sveier, H., Høgøy, I., Lied, E., 1999. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture 174, 119-137.

FAO., 2012. Feeding the growing aquaculture sector: an analysis. Cape Town, South Africa, 26-30.

FAO., 2016. The state of world fisheries and aquaculture. Rome, Italy.

FAO. © 2006-2017. Cultured Aquatic Species Information Programme. Lates calcarifer. Cultured Aquatic Species Information Programme. Text by Rimmer, M.A. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 3 June 2006.

Felix, N., Kalaivani, S., Bala Murugan, U., Rajaram, K., 2014. Replacement of fish meal in cobia (Rachycentron canadum) diet with squid waste and squid waste silage. International Journal of Fisheries and Aquatic Studies 1, 256-260.

Folch, J., Lees, M., Stanely, C.H.S., 1957. A simple method for the isolation and
purification of total lipids from animal tissues. The Journal of Biological
Chemistry 266, 477-509.

Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E., Stone, D., Wilson, R., Wurtele, E., Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research 38, 551-579.

Gildberg, A., Bogwald, J., Johansen, A., Stenberg, E., 1996. Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on atlantic salmon (Salmo salar) head kidney leucocytes. Comparative Biochemistry and Physiology 114(B), 97-101.

Glencross, B.D., 2006. The nutritional management of barramundi, Lates calcarifer– a review. Aquaculture Nutrition 12, 291-309.

Glencross, B.D., Booth, M., Allan, G.L., 2007. A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition 13, 17-34.

Gu, M., Bai, N., Zhang, Y., Krogdahl, Å., 2016. Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture 464, 286-295.

Gui, D., Liu, W., Shao, X., Xu, W., 2010. Effects of different dietary levels of cottonseed meal protein hydrolysate on growth, digestibility, body composition and serum biochemical indices in crucian carp (Carassius auratus gibelio). Animal Feed Science and Technology 156, 112-120.

Halim, N.R.A., Yusof, H.M., Sarbon, N.M., 2016. Functional and bioactive properties of fish protein hydolysates and peptides-A comprehensive review. Trends in Food Science & Technology 51, 24-33.

Halver, J.E. 1989. Fish nutrition second edition, Academic press, San Diego, 798 pp.

Hasan, M.R., Haq, M.S., Das, P.M., Mowlah, G., 1997. Evaluation of poultry-feather meal as a dietary protein source for Indian major carp, Labeo rohita fry. Aquaculture 151, 47-54.

Heidemann, R., Zhang, C., Qi, H., Rule, J. L., Rozales, C., Park, S., Chuppa, S., Ray, M., Michaels, J., Konstantinov, K., Naveh, D., Naveh, D., 2000. The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32, 157–167.

Hevroy, E.M., Espe, M., Waagbo, R., Sandnes, K., Ruud, M., Hemre, G.I., 2005. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition 11, 301-313.

Hrčková, M., Rusňáková, M., Zemanovič, J., 2002. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech Journal of Food Sciences 20, 7-14.

Ilham, I., Fotedar, R., 2016. Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented soybean meal and organic selenium. Fish Physiology and Biochemistry 43, 775–790.

Jan, D.C.H., Jones, S.J., Emery, A.N., Al-Rubeai, M., 1994. Peptone, a low-cost growth-promoting nutrient for intensive animal cell. Cytotechnoiogy 16, 17-26.

Jiang, Y.B., Yin, Q.Q., Yang, Y.R., 2009. Effect of soybean peptides on growth performance, intestinal structure and mucosal immunity of broilers. Journal of Animal Physiology and Animal Nutrition 93, 754-760.

Kader, M.A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B.T., Komilus, C.F., 2012. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture 350-353, 109-116.

Khosravi, S., Bui, H.T.D., Rahimnejad, S., Herault, M., Fournier, V., Jeong, J.B., Lee, K.J., 2015b. Effect of dietary hydrolysate supplementation on growth performance, non-specific immune response and disease resistance of olive flounder (Paralichthys olivaceus) challenged withEdwardsiella tarda. Aquaculture Nutrition 21, 321-331.

Khosravi, S., Bui, H.T.D., Rahimnejad, S., Herault, M., Fournier, V., Kim, S.S., Jeong, J.B., Lee, K.J., 2015a. Dietary supplementation of marine protein hydrolysates in fish-meal based diets for red sea bream(Pagrus major)and olive flounder (Paralichthys olivaceus). Aquaculture 435, 371-376.

Kolkovs, S., Czesn, S., Dabrowski, K., 2000. Use of krill hydrolysate as feed attractant for fish larvae and juveniles. Journal of the World Aquaculture Society 31, 81-88.

Kong, X., Guo, M., Hua, Y., Cao, D., Zhang, C., 2008. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology 99, 8873-8879.

Kotzamanis, Y.P., Gisbert, E., Gatesoupe, F.J., Zambonino Infante, J., Cahu, C., 2007. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology 147(A), 205-214.

Kristinsson, H. G., 2006. The Production Properties and Utilization of Fish Protein Hydrolysates. In Shetty, K., Paliyath, G., Pometto, A., Levin, R.E. (Eds.), Food Biotechnology (Second Edition ed.). Taylor Francis Inc., USA, pp. 1109-1132.

Lee, S.M., Mohammadi Azarm, H., Chang, K. H., 2016. Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 459, 110-116.

Li, P.Y., Wang, J.Y., Song, Z.D., Zhang, L.M., Zhang, H., Li, X.X., Pan, Q., 2015. Evaluation of soy protein concentrate as a substitute for fishmeal in diets for juvenile starry flounder (Platichthys stellatus). Aquaculture 448, 578-585.

Liang, M., Wang, J., Chang, Q., Mai, K. (2006). Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828). Aquaculture Research 37, 102-106.

Lim, S., Choi, S.M., Wang, X.J., Kim, K.W., Shin, I.S., Min, T.S., Bai, S.C., 2004. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish Sebastes schlegeli. Aquaculture 231, 457-468.

Lim, S.J, Kim, S.S., Ko, G.Y., Song, J.W., Oh, D.H., Kim, J.D., Kim, J.U., Lee, K.J., 2011. Fish meal replacement by soybean meal in diets for Tiger puffer, Takifugu rubripes. Aquaculture 313, 165-170.

Mamauag, R.E.P., Koshio, S., Ishikawa, M., Yokoyama, S., Gao, J., Nguyen, B.T., Ragaza, J.A., 2011. Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and body composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 321, 252-258.

Mamauag, R.E. P., Ragaza, J.A., 2016. Growth and feed performance, digestibility and acute stress response of juvenile grouper (Epinephelus fuscoguttatus) fed diets with hydrolysate from milkfish offal. Aquaculture Research 48, 1638-1647.

McMeniman, N., 2003. Digestibility and utilisation of starch by barramundi. In: Allan, G.L., Booth, M.A., Stone, D.A.J., Anderson, A.J., (Eds.), Aquaculture Diet Development Subprogram: Ingredient Evaluation. Project 1996-391, Final Report to the Fisheries R&D Corporation, Canberra, Australia, pp 135–139.

Moreira, I.S., Peres, H., Couto, A., Enes, P., Oliva-Teles, A., 2008. Temperature and dietary carbohydrate level effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274, 153-160.

Murray, A.L., Pascho, R.J., Alcorn, S.W., Fairgrieve, W.T., Shearer, K.D., Roley, D., 2003. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture 220, 643-653.

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024.

NRC, 2011. National Research Council, Nutrient requirements of fish and shrimp. National Academy Press, Washington DC, USA, 376 pp.
.
Ovissipour, M., Abedian Kenari, A., Nazari, R., Motamedzadegan, A., Rasco, B., 2014. Tuna viscera protein hydrolysate: nutritive and disease resistance properties for Persian sturgeon (Acipenser persicus L.) larvae. Aquaculture Research 45, 591-601.

Peisker, M., 2001. Manufacturing of soy protein concentrate for animal nutrition. In Brufau, J.(Ed.), Feed Manufacturing in the Mediterranean Region. Improving Safety: From Feed to Food. Zaragoza: CIHEAM, pp. 103-107.

Phromkunthong, W., Boonyaratpalin, M., Storch, V., 1997 Different concentrations of ascorbyl-2-monophosphate-magnesium as dietary sources of vitamin C for seabass, Lates calcarifer. Aquaculture 151, 225-243.

Reddy, N.R., 1994. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Research International 27, 281-290.

Refstie, S., Olli, J.J., Standal, H., 2004. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239, 331-349.

Ridwanudin, A., Huang , C.Y., Sheen, S.S., 2013. Fish meal replacement by soybean meal in the diets for hybrid red snapper (Lutjanus argentimaculatus × Lutjanus sebae). Journal of The Fisheries Society of Taiwan 40, 192-203.

Ridwanudin, A., Sheen, S.S., 2014. Evaluation of dietary fish silage combined with poultry byproduct meal or soybean meal to replace fish meal for orange-spotted grouper Epinephelus coioides. Journal of The Fisheries Society of Taiwan 41,287-297.

Rossi, W., Newcomb, M., Gatlin, D.M., 2017. Assessing the nutritional value of an enzymatically processed soybean meal in early juvenile red drum, Sciaenops ocellatus L. Aquaculture 467, 94-101.

Sakaras, W., Boonyaratpalin, M., Unprasert, N., Kumpang, P., 1988. Optimum Dietary Protein Energy Ratio in Seabass Feed I. Technical Paper No. 7, Rayong Brackishwater Fisheries Station, Thailand, 20pp.

Salze, G., McLean, E., Battle, P.R., Schwarz, M.H., Craig, S.R., 2010. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture 298, 294-299.

Sánchez-Lozano, N.B., Martínez-Llorens, S., Tomás-Vidal, A., Cerdá, M.J., 2009. Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture 298, 83-89.

Secombes, C.J., 1990. Isolation of salmonid macrophage and analysis of their killing activity. In Stolen, J.S., Fletcher, T.C., Anderson, D.P., Roberson, B.S., van Muiswinkel, W.B. (Eds.), Techniques in Fish Immunology. USA: SOS Publications, pp.137-154.

Secombes, C.J., 1996. The nonspecific immune system: celluar defenses. In Iwama, G., Nakanishi, T., (Eds.), The fish immune system: organism, pathogen, and environment. Academic Press, Inc., USA, pp.67-76.

Shapawi, R., Ebi, I., Yong, A., 2013. Soybean meal as a source of protein in formulated diets for tiger grouper, Epinephelus fuscoguttatus juvenile. Part I: Effects on growth, survival, feed utilization and body compositions. Agricultural Sciences 4, 317-323.

Sheen, S.S., Chen, C.T., Ridwanudin, A., 2014. The effect of partial replacement of fish meal protein by dietary hydrolyzed fish protein concentrate on the growth performance of orange-spotted grouper Epinephelus coioides. Journal of Aquaculture & Marine Biology1, 1-6.

Shepherd , C.J., Jackson, A.J., 2013. Global fishmeal and fish-oil supply: inputs, outputs and markets. Journal of Fish Biology83, 1046-1066.

Song, Z., Li, H., Wang, J., Li, P., Sun, Y., Zhang, L., 2014. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture 426-427, 96-104.

Srichanun, M., Tantikitti, C., Kortner, T.M., Krogdahl, Å., Chotikachinda, R., 2014. Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass ( Lates calcarifer Bloch) larvae. Aquaculture 428-429, 195-202.

Stone, D.A.J., 2003. Dietary Carbohydrate Utilization by Fish. Reviews in Fisheries Science 11, 337-369.

Tantikitti, C., Sangpong, W., Chiavareesajja, S., 2005. Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer). Aquaculture 248, 41-50.

Tucker, J.W., Mackinnon, M.R., Russell, D.J., O'Brien, J.J., Cazzola, E., 1988. Growth of Juvenile Barramundi (Lates calcarifer) on Dry Feeds. The Progressive Fish-Culturist 50, 81-85.

Wanakowat, J., Boonyaratpalin, M., Pimolindja, T & Assavaaree, M., 1989. Vitamin B6 requirement of juvenile seabass Lates calcarifer. In: Takeda, M., Watanabe, T. (Eds), The Current Status of Fish Nutrition in Aquaculture, Tokyo University of Fisheries, Tokyo, Japan. pp. 141-147.

Wang, W., de Mejia, E.G., 2005. A new frontier in soy bioactive peptides that may prevent age related chronic diseases. Comprehensive Reviews in Food Science and Food Safety 4, 63-78.

Wang, Y., Kong, L.J., Li, C., Bureau, D.P., 2006. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides). Aquaculture 261, 1307-1313.

Wang, Y., Wang, F., Ji, W.X., Han, H., Li, P., 2015. Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal. Aquaculture Research 46, 874-883.

Wang, L., Zhou, H., He, R., Xu, W., Mai, K., He, G., 2016. Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot ( Scophthalmus maximus L.). Aquaculture 464, 87-94.

Webster, C.D., Lim, C., 2002. Nutrient Requirements and Feeding of Finfish for Aquaculture. CABI Publishing, Wallingford Oxon, UK, 416 pp.

Williams, K.C., Barlow, C., 1999. Nurtritional reseach in Australia to improve pelleted diets for groe-out barramundi Lates calcarifer (Bloch). In:Cabanban, A.S., Phillips, M., (Eds.), Aquaculture of Coral Fishes and Sustainable Reef Fisheries. Institute for Development Studies, Sabah, Malaysia, pp. 163-172.

Williams, K.C., Barlow, C.G., Rodgers, L., McMeniman, N., Johnston, W., 1999. High performance grow-out pelleted diets for cage culture of barramundi (Asain seabass) Lates calcarifer.In: Proceeding of the first international symposium on cage culture in Asia.Tungkang,Taiwan, 29 pp.

Williams, K.C., Barlow, C.G., Rodgers, L., Hockings, I., Agcopra, C., Ruscoe, I., 2003. Asian seabass Lates calcarifer perform well when fed pelleted diets high in protein and lipid. Aquaculture 225, 191-206.

Wong, F.J., Chou, F., 1989. Dietary protein requirement of early grow-out seabass(Lates calcarifer Bloch) and some observations on the performance of two practical formulated feeds. Paper presented at the Report of the Workshop on Shrimp and Finfish Feed Development., johor bahru, Malaysia, pp.91-102.

Xu, H., Mu, Y., Zhang, Y., Li, J., Liang, M., Zheng, K., Wei, Y., 2016. Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): effects on growth performance and lipid accumulation. Aquaculture 454, 140-147.

Zheng, K., Liang, M., Yao, H., Wang, J., Chang, Q., 2012. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition 18, 297-303.

Zheng, K., Liang, M., Yao, H., Wang, J., Chang, Q., 2013. Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquaculture Research 44, 895-902.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 嘉大蛋白對金目鱸幼魚成長的影響
2. 飼料中不同蛋白質來源取代魚粉對條石鯛(Oplegnathus fasciatus)成長及體組成之影響
3. 納豆粉取代飼料中魚粉對金目鱸魚(Lates calcarifer)成長之影響
4. 飼養溫度對金目鱸(Lates calcarifer)幼魚成長表現、攝食量及體組成之影響
5. 飼料中以鷄肉粉,發酵大豆粉, 魚溶漿和水解魚蛋白取代魚粉蛋白對金目鱸成長之影響
6. 飼料中添加不同的動物及植物水解蛋白對南美白對蝦成長及體組成之影響
7. 水產飼料添加植物性蛋白之研究以金目鱸魚養殖為例
8. 添加乳酸菌Weissella cibaria與Weissella paramesenteroides對金目鱸(Lates calcarifer)仔、幼魚的成長、免疫反應及抵抗鏈球菌之影響
9. 飼料中添加亞麻籽粉與大豆油取代魚油對點帶石斑(Epinephelus coioides)成長、脂肪酸組成之影響
10. 不同發酵豆粉取代魚粉應用於金目鱸之成長分析
11. 飼料中以不同含量乾燥蛆蟲粉和冷凍蛆蟲取代魚粉蛋白對白蝦的成長及脫殼影響
12. 飼料中以大豆粉取代魚粉對雜交赤鰭笛鯛及以雞肉粉和水解魚蛋白取代魚粉對點帶石斑成長之影響
13. 飼料中添加蒼朮粗原料及濃縮製劑對金目鱸成長及非特異性免疫反應的影響
14. 飼料中添加葡萄萃取物及有機硒對金目鱸成長表現及抗氧化反應之影響
15. 飼料中以玉米副產品取代魚粉蛋白對點帶石斑(Epinephelus coioides)成長與體組成之影響