跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯明仁
研究生(外文):Ko, Ming-Jen
論文名稱:以褐藻酸鈉與幾丁聚醣作為殼材包覆腸炎弧菌、創傷弧菌及溶藻弧菌之口服疫苗對養殖石斑魚之有效性研究
論文名稱(外文):Protective effectiveness of oral vaccines of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio alginolyticus encapsulated with alginate and chitosan in cultured grouper (Epinephelus coioides)
指導教授:劉秉忠李國誥李國誥引用關係
指導教授(外文):Liu, Ping-ChungLee, Kuo-Kau
口試委員:劉秉忠李國誥黃世鈴秦宗顯
口試委員(外文):Liu, Ping-ChungLee, Kuo-KauHuang, Shih-LingChin, Tzong-Shean
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:褐藻酸鈉幾丁聚醣口服疫苗點帶石斑
外文關鍵詞:Sodium alginatechitosanoral vaccineEpinephelus coioides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別使用褐藻酸鈉 (Sodium alginate) 包埋 (Alginate組) 及 褐藻酸鈉與幾丁聚醣 (chitosan) 雙重包埋 (Alginate Chitosan組),分別包覆腸炎弧菌 (Vibrio parahaemolyticus)、創傷弧菌 (Vibrio vulnificus) 及溶藻弧菌 (Vibrio alginolyticus) 製備三價口服疫苗。點帶石斑接種後,藉由分析1免疫基因表現量、2相對活存率、3血清抗體力價,來探討口服疫苗是否具有效性,並比較不同包覆方式之間保護力的差異。

以不同材料: Alginate、Alginate Chitosan、CAP、Agarose、Curdlan 分別包覆口服疫苗,經模擬石斑魚腸胃道環境的抗原釋放量實驗,以 Alginate包埋及以 Alginate Chitosan 雙重包埋之口服疫苗在仿胃液環境 (PBS, pH 3.45) 僅少量釋放抗原,並在仿腸液 (PBS, pH 7.4) 環境時抗原會大量釋放,具有良好的口服疫苗包覆殼材的特性,故以此兩種包覆方式製備口服疫苗進行生物體實驗。

點帶石斑魚於實驗第 1 週及第 5 週接種口服疫苗,於實驗第 0、4、8、12、16、20、24 週採樣及細菌攻擊。基因表現量部分,實驗第 4 週免疫相關基因 IL-1β、 TLR9、 GATA-3、 CD4 表現量均高於 Control組,表示接種後能確實誘導免疫基因表現。其中,GATA-3 為後天記憶型免疫中誘導生成抗體的轉錄因子,實驗第 4 週 GATA-3 基因大量表現並與 Control組有顯著差異 (p<0.05);第 8 週時,二次接種雖有誘導免疫基因表現,但對 GATA-3 基因的刺激效果並不如初次接種;第 12 週時因為未再接受抗原,GATA-3 基因的表現量持續下降。

細菌攻擊實驗部分,Alginate組的相對活存率 (RPS) 最高可達 100%,Alginate Chitosan組最高可達 83%。Alginate組保護效力可維持至第 16 週 (RPS 83.3%),第 20 週對 V. parahaemolyticus、V. vulnificus 及 V. alginolyticus 之 RPS 分別仍有 66.7、100、50%;Alginate Chitosan組相對活存率至第 16 週即下降至 50%,第 20 週僅33.3%。兩口服疫苗於第 24 週已無明顯保護力,Alginate 組對 V. parahaemolyticus、V. vulnificus 及 V. alginolyticus 的相對活存率分別為 33.3、50、16.7%,Alginate Chitosan組的相對活存率皆為 0%。

血清抗體力價部分,Alginate組在每個採樣點的力價均高於 Alginate Chitosan組;Alginate組於第 8 週達到最高後緩慢下降,抗體維持高力價至第 16 週,第 8 週至第 16 週之間無顯著差異 (p>0.05),第 20 週下降至與 8至 16 週有顯著差異 (p<0.05);Alginate Chitosan組於第 8 週達到最高後即大幅下降,對 V. parahaemolyticus 及 V. vulnificus 的抗體力價於第 12 週即與第 8 週有顯著差異 (p<0.05)。

本研究結果顯示,以褐藻酸鈉或褐藻酸鈉與幾丁聚醣之弧菌三價口服疫苗對石斑魚具良好之保護效果,具有進一步商業化之潛力。
This study investigated the protective effectiveness of oral trivalent vaccines of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio alginolyticus encapsulated with alginate and chitosan-alginate complex, respectively, in cultured grouper. Immuno-related gene expression, relative percent survival and serum antibody titer of grouper were determined after vaccination.
Oral vaccine encapsulated with agarose, CAP, curdlan, alginate and chitosan-alginate complex, respectively, were tested under simulation of gastric fluid condition (PBS, pH 3.75) and intestine fluid condition (PBS, pH 7.4). The results showed that alginate encapsulated oral vaccine and chitosan-alginate complex encapsulated oral vaccine released few antigens in gastric acidic condition, indicating that antigens were effectively coated and its destruction might therefore be prevented. In intestine alkaline condition, large quantity of antigens were released, indicating that these two encapsulated vaccines were good candidates to be administered orally.
After vaccination, both alginate encapsulated group and chitosan-alginate complex encapsulated group had stimulated fish immune-genes, including IL-1β, TLR9, GATA-3 and CD4. Of these, GATA-3 was a transcription factor that played an important role in affecting production of antibodies. The GATA-3 genes expressed in both vaccine groups were significantly higher than that of control group.
High relative percent survival (RPS) of grouper could be maintained in alginate encapsulated group until weeks 16 (83.3%), while decreased to 66.7% at weeks 20 after bacterial challenge. In chitosan-alginate complex encapsulated group, relative percent survival of grouper were dropped to 50% at weeks 16, and decreased to 33.3% at weeks 20 after bacterial challenge.
Serum antibody titer in grouper could maintain steadily at high level until weeks 16 and decreased slowly in alginate encapsulated group, while chitosan-alginate complex encapsulated group decreased rapidly after reaching the highest level at weeks 8.
The present results revealed that the oral trivalent vibrio vaccines encapsulated with sodium alginate or chitosan-alginate complex exhibited good protective effectiveness in grouper. It seemed that these two oral vaccines possess good potential for further commercialization.
摘要 I
Abstract III
圖目錄 VII
表目錄 VIII
第一章 前言 1
第二章 文獻整理 3
2.1點帶石斑魚 3
2.2石斑魚之弧菌症 3
2.3腸炎弧菌 (Vibrio parahaemolyticus) 4
2.4創傷弧菌 (Vibrio vulnificus) 5
2.5溶藻弧菌 (Vibrio alginolyticus) 6
2.6魚類免疫系統 6
2.6.1魚類免疫器官 7
2.6.2先天性免疫 7
2.6.3適應性免疫 7
2.7魚類疫苗 8
2.8口服疫苗 9
2.9卡德蘭膠 (Curdlan) 9
2.10鄰苯二甲酸乙酸纖維素 (Cellulose acetate phthalate,CAP) 10
2.11褐藻酸鈉 (Sodium Alginate) 10
2.12幾丁聚醣 (Chitosan) 11
第三章 材料方法 13
3.1實驗菌株 13
3.1.1菌株來源 13
3.1.2菌株確認 13
3.1.3 API 20E system 13
3.1.4聚合酶連鎖反應 (Polymerase Chain Raction;PCR) 13
3.1.4.1菌株DNA萃取 13
3.1.4.2 Vibrio parahaemolyticus 聚合酶連鎖反應 14
3.1.4.3 Vibrio vulnificus 聚合酶連鎖反應 14
3.1.4.4 Vibrio alginolyticus 聚合酶連鎖反應 15
3.1.4.5洋菜膠膠體電泳 15
3.1.5菌株強化 15
3.1.6菌株毒力試驗 16
3.2抗原製備 16
3.3口服疫苗製備 16
3.3.1鄰苯二甲酸乙酸纖維素 (CAP) 包覆製備 17
3.3.2卡德蘭膠 (Curdlan) 包覆製備 17
3.3.3洋菜膠 (Agarose) 包覆製備 17
3.3.4褐藻酸鈉 (Sodium Alginate) 包覆製備 17
3.3.5褐藻酸鈉 (Sodium Alginate) 與幾丁聚醣 (chitosan) 雙重包埋包覆製備 17
3.4口服疫苗於模擬石斑腸胃道環境中的抗體釋放量測試 18
3.5血清採集與Rabbit anti-Grouper血清製備 18
3.6主動免疫實驗 18
3.6.1實驗設計 18
3.6.2核糖核酸萃取 19
3.6.3反轉錄聚合酶連鎖反應 (Reverse transcription-polymerase chain reaction, RT-PCR) 19
3.6.4及時定量聚合酶連鎖反應 (Real-time quantitative PCR) 20
3.6.5蛋白質含量檢測 20
3.6.6攻擊試驗 21
3.6.7血清抗體力價分析 21
3.7統計分析 21
第四章 結果 23
4.1實驗菌株 23
4.1.1菌株確認及強化 23
4.1.2菌株毒力試驗 23
4.2疫苗於模擬石斑腸胃環境中的抗體釋放量測試 23
4.3主動免疫實驗 24
4.3.1接種後三個月內免疫基因表現量 24
4.3.1.1 IL-1β 基因在免疫後石斑魚頭腎之表現情形 24
4.3.1.2 TLR9 基因在免疫後石斑魚頭腎之表現情形 24
4.3.1.3 T-bet 基因在免疫後石斑魚頭腎之表現情形 25
4.3.1.4 GATA-3 基因在免疫後石斑魚頭腎之表現情形 25
4.3.1.5 CD4 基因在免疫後石斑魚頭腎之表現情形 25
4.3.2攻擊試驗 25
4.3.3接種疫苗後之血清抗體力價分析 26
4.3.3.1接種疫苗後石斑血清對 V. parahaemolyticus 之抗體力價分析 27
4.3.3.2接種疫苗後石斑血清對 V. vulnificus 之抗體力價分析 28
4.3.3.3接種疫苗後石斑血清對 V. alginolyticus 之抗體力價分析 29
第五章 討論 30
5.1口服疫苗抗體釋放量 30
5.2接種口服疫苗對免疫基因的影響 31
5.3口服疫苗之保護力 32
第六章 結論 35
第七章 參考文獻 36
王怡婷,2014。創傷弧菌與腸炎弧菌二價疫苗及其免疫雞蛋黃IgY應用於養殖石斑魚之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
吳欣翰,2012。腸炎弧菌注射及口服疫苗應用於石斑魚之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
李柏蒼,2010。應用溶藻弧菌及其免疫雞蛋黃IgY於石斑魚養殖之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
李舒萍,2012。鏈球菌疫苗及其雞蛋黃免疫球蛋白 (IgY) 應用在石斑魚養殖之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
李毅揚,2006。嗜水性產氣單胞菌疫苗應用於養殖吳郭魚之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
奈良潔,1991。カ-ドランの性質と食品への利用。食品工業, Jul. 30:31-40。.
林育德,2002。幾丁聚醣與褐藻酸鈉複合水合膠之物化特性。國立台灣海洋大學食品科學研究所,碩士論文。
林超群,2016。以生物殼材包覆福馬林不活化及超音波震碎腸炎及創傷弧菌作為口服疫苗對養殖石斑之保護效果。國立台灣海洋大學水產養殖研究所,碩士論文。
林聖智,2009。應用鮫弧菌疫苗及其雞蛋黃免疫球蛋白 (IgY) 於點帶石斑魚腸水種症之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
林鈺庚,2013。吳郭魚鏈球菌二價疫苗之開發。國立台灣海洋大學水產養殖研究所,碩士論文。
邱俊豪,2016。鱸鰻鰻線疾病防治及其幼苗細菌性口服疫苗開發研究。國立台灣海洋大學水產養殖研究所,碩士論文。
邵廣昭,2009。台灣魚類資料庫網路電子版。http://fishdb.sinica.edu.tw。
翁玉宣,2006。二價弧菌疫苗應用於養殖石斑魚之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
張家榮,2007。巴斯德桿菌及溶藻弧菌混和疫苗應用於養殖海鱺之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
張錦宜、張志堅、吳嘉哲、林金榮,2012。溶藻弧菌選別性培養基之研發。水試專訓 第37期。
張志堅、林上海、黃美瑩、林金榮、張錦宜、賴秀繐,2014。屏東縣佳冬鄉養殖石斑魚疾病之盛行率研究。水產研究第 22 期,35-44。
許文獻,2011。探討褐藻酸鈉-幾丁聚醣包覆IgY對點帶石斑免疫力之影響。國立台灣海洋大學水產養殖研究所,碩士論文。
郭則佑,2012。應用創傷弧菌疫苗及其免疫雞蛋黃IgY於石斑魚養殖之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
陳吟竹,2004。以蛋白質分析法偵測創傷弧菌無細胞毒殺性突變株內表現量降低之蛋白質 創傷弧菌TolC 缺失突變株之補償作用。國立成功大學微生物劑免疫研究所,碩士論文。
陳詳鵬,2013。CpG寡去氧核醣核酸應用於神經壞死病毒DNA疫苗之研究。國立台灣海洋大學生物科技研究所,碩士論文。
曾哲明,2015。免疫學 (第三版)。新文京出版社。
楊政勳,2013。不同殼材包覆溶藻弧菌與鮫弧菌口服疫苗對養殖石斑魚之有效性研究。國立台灣海洋大學水產養殖研究所,碩士論文。
葉偉生,2012。弧菌二價疫苗及微顆粒包覆口服疫苗應用養殖石斑魚上之研究。國立台灣海洋大學水產養殖研究所,碩士論文。
漁業年報,2016。行政院農業委員會漁業署。http://www.fa.gov.tw/cht/。
劉小紅、李芳、李學輝、張引弟,2002。內窺鏡消毒後戊二醛殘留量的實驗研究。中華醫院感染學雜誌第 3 期
劉樹海、鞏洪剛、常見暉,2008。智能化凝膠控釋黏膜給藥系統應用研究進展. 中國醫藥技術經營與管理第 2 卷第 8 期,52-59。
蔡信雄、謝嘉裕、吳宗炳,2007。臺灣石斑魚疾病診治。國立屏東科技大學獸醫學系。
謝世璋,2007。聚乳酸與纖維素醋酸丙酸酯混合系統之研究. 私立東海大學化學工程研究所,碩士論文。
Alam, M. J., Tomochika, K.I., Miyoshi, S.I., Shinoda, S., 2002. Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiology Letters, 208: 83-87.
Amaro, C., Biosca, E.G., 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Applied and Environmental Microbiology, 62: 1454-1457.
Austin B., Austin D. A. 1999. Characteristics of the pathogens: Gram-negative bacteria, Vibrionaceae representatives. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish, 102-118. Springer Netherlands.
Aydin, P. R., Akbuğa, J., 1996. Chitosan beads for the delivery of salmon calcitonin: Preparation and release characteristics. International Journal of Pharmaceutics, 131, 101-103.
Ballesteros, N. A., Alonso, M., Saint-Jean, S. R., Perez-Prieto, S. I., 2015. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish and Shellfish Immunology, 45(2): 877-888.
Bisharat, N., Agmon, V., Finkelstein, R., Raz, R., Ben-Dror, G., Lerner, L., Soboh, S., Colodner, R., Cameron, D.N., Wykstra, D.L., Swerdlow, D.L., Farmer, J.J.3rd., 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group, 354: 1421-1424.
Boudinot, P., Blanco, M., Kinkelin, P., Benmansour, A., 1998. Combined DNA immunization with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity and nonspecific response in rainbow trout. Virology, 249(2): 297-306.
Bradshaw, J. G., Francis, D. W., Twedt, R. M., 1974. Survival of Vibrio parahaemolyticus in cooked seafood at refrigeration temperatures. Applied and Environmental Microbiology, 27: 657-661.
Burke, J., Rodger, L., 1981. Identification of pathogenic bacteria associated with the occurrence of red spot in sea mullet, Mugil cephalus L., in south-eastern Queensland. Journal of Fish Diseases, 3: 153-159.
Cai, J., Han, Y., Wang, Z., 2006. Isolation of Vibrio parahaemolyticus from abalone (Haliotis diversicolor supertexta L.) postlarvae associated with mass mortalities. Aquaculture, 257: 161-166.
Chen, S. P., Peng, R. H., Chiou, P. P. 2015. Modulatory effect of CpG oligodeoxynucleotide on a DNA vaccine against nervous necrosis virus in orange-spotted grouper (Epinephelus coioides). Fish and Shellfish Immunology, 45(2): 919-926.
Cheng, A. C., Tu, C.W., Chen, Y.Y., Nan, F.H., Chen, J.C., 2007. The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio alginolyicus. Fish and Shellfish Immunology, 22: 197-205.
Chiou, C. S., Hsu,S.Y.,Chiu,S.I.,Wang,T.K.,Chao,C.S., 2000. Vibrio parahaemolyticus serovar O3: K6 as cause of unusually high incidence of food-borne disease outbreaks in Taiwan from 1996 to 1999. Clinical Microbiology, 38: 4621-4625.
Colorni, A., Paperna, I., Gordin, H., 1981. Bacterial infections in gilthead sea bream, Sparus aurata, cultured at Elat. Aquaculture, 23: 257-267.
Danilova, N., Bussmann, J., Jekosch, K., Steiner, L. A., 2005. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology, 6(3): 295-302.
DePaola, A., Nordstrom, J.L., Bowers, J.C., Wells, J.G., Cook, D.W., 2003. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Applied and Environmental Microbiology, 69: 1521-1526.
Di Pinto A, C. G., Tantillo G, Catalano D, Forte V.T., 2005. A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. Journal of Food Protection, 68(1): 150-133.
Esteve-Gassent, M. D., Nielsen, M. E., Amaro, C., 2003. The kinetics of antibody production in mucus and serum of European eel (Anguilla anguilla L.) after vaccination against Vibrio vulnificus: development of a new method for antibody quantification in skin mucus. Fish and Shellfish Immunology, 15(1): 51-61.
Evelyn, T. P. T., 1997. A historical review of fish vaccinology. Developments in Biological Standardization, 90: 3-12.
Fujiki, K., Matsuyama, H., Yano, T., 1994. Protective effect of sodium alginates against bacterial infection in common carp Cyprinus carpio L. Journal of Fish Diseases, 17: 349-355.
Harada, K., Masada, M., Fujimori, K., Maeda. I., 1966. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. Agricultural Biology and Chemistry, 30: 196-198.
Hjeltnes, B., Anderson, K., Edigus, E., 1987. Multiple low-level antibiotic resistance to Aeromonas salmonicida. Antimicrobial Agents and Chemotherapy, 29(6): 992-996.
Jiang, X., Chai T.J., 1996. Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable non culturable cells. Applied and Environmental Microbiology, 62: 1300-1305.
John D. Hansen, Eric D. Landis, Ruth B. Phillips, 2005. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of National Academy of Sciences of the United States of America, 102: 6919-6924
Kanellos T, S. I., Ambali AG, Howard CR, Russell PH., 1999. The safety and longevity of DNA vaccines for fish. Immunology, 96(2): 307-313.
Klöck, G., Pfeffermann, A., Ryser, C., Gröhn, P., Kuttler, B., Hahn, H.-J., Zimmermann, U., 1997. Biocompatibility of mannuronic acid-rich alginates. Biomaterials, 18(10): 707-713.
Knorr, D., 1984. Use of chitinous polymers in food- A challenge for food research and development. Food Technology, 38: 85-97.
Kumar, H. S., Parvathi, A., Karunasagar, I., 2006. A gyrB-based PCR for the detection of Vibrio vulnificus and its application for direct detection of this pathogen in oyster enrichment broths. Food Microbiology, 111: 216-220.
Kusuda, R., Yokoyama, J., Kawai, K., 1986. Bacteriological study on cause of mass mortalities in cultured black sea bream fry. Bulletin of the Japanese Society of Scientific Fisheries, 52(10): 1745-1751.
Lee, K. K., 1995. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus, Bloch et Schneider. Microbial Pathogenesis, 19: 39-48.
Lee, K. K., Liu, P.C., Chuang, W.H., 2001. Pathogenesis of gastroenteritis in cultured marine fish. . Abstract S13, in International Marine Biotechnology Symposium, Academic Sinica, Taiwan.
Lee, K. K., Liu, P.C., Chuang, W.H., 2002. Pathogenesis of gastroenteritis caused by Vibrio carchariae in cultured marine fish. Marine Biotechnology, 4: 267-277.
Lee, K. K., Yii, K.C., Yang, T.I., Hong, H.I., Liu, P.C., 1999. Protease and virulence of trhe extracelluar products produced by Vibrio carahariae after growth on various media. Zeitschrift fur Natruforschung, 54C: 383-386.
Lee, P. P., Lin, Y. H., Chen, M. C., Cheng, W., 2017. Dietary administration of sodium alginate ameliorated stress and promoted immune resistance of grouper Epinephelus coioides under cold stress. Fish and Shellfish Immunology, 65: 127-135.
Lightner DV, 2012. Biology and pathology of early mortality syndrome of shrimp, Global outlook for aquaculture leadership, Bangkok: 40.
Lightner DV, Redman CR, Pantoja BL, Noble LM, Nunan, Loc Tran, 2013. Documentation of an Emerging Disease (Early Mortality Syndrome) in SE Asia & Mexico. OIE Reference Laboratory for Shrimp Diseases, Department of Veterinary Science & Microbiology, School of Animal and Comparative Biomedical Sciences
Lin, C. C., Lin, J.H.Y., Chen, M.S., Yang, H.L., 2007. An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides). Aquaculture, 268: 265-273.
Lin, S. H., Davidson, G.A., Secombes, C.J., Ellis, A.E., 1998. A morphological study of cells isolated from the perfused gills of dab and Atlantic salmon. Journal of Fish Biology, 53: 560-568.
Maclaughlin, F. C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M., Rolland, A.P., 1998. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release, 56(13): 259-272.
McCarter, L. L., Silverman, M., 1987. Phosphate regulation of gene expression in Vibrio parahaemolyticus. Journal of Bacteriology, 169: 3441-3449.
Mohammadpour Dounighi, N., Mortazavi, S. A., Rezaei Mokarram, A., Zolfagharian, H., Alonso, M. J., 2008. Preparation and in-vitro evaluation of sodium alginate microspheres containg diptheria toxoid as new vaccine delivery. Archives of Razi Institue, 63(2): 19-28.
Murata, Y., Maeda, T., Miyamoto, E., Kawashima, S., 1993. Preparation of chitosan-reinforced alginate gel beads - effects of chitosan on gel matrix erosion. International Journal of Pharmaceutics, 96: 139-145.
Nagasawa, K. and E. R. Cruz-Lacierda, 2004. Disease of Cultured Groupers. Southeast Asian Fisheries Development Center Aquaculture Department, Government of Japan Department, Iloilo, Philippines, 3: 56.
Nakao, Y., Taguchi, T., Konno, A., Tawada, T., Kasai, H., Toda, J., Terasaki, M., 1991. Curdlan: properties and application to foods. Journal of Food Science, 56(3): 769-776.
Nash, G., Anderson, I.G., Shariff, M., Shamsudin, M.N., 1987. Bacteriosis associated with epizootic in the giant sea perch, Lates calcarifer, and the estuarine grouper Epinephelus tauvinus, cage cultured in Malaysia. Aquaculture, 67: 105-111.
Nguyen, H. T., Thu Nguyen, T. T., Tsai, M. A., Ya-Zhen, E., Wang, P. C., Chen, S. C., 2017. A formalin-inactivated vaccine provides good protection against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish and Shellfish Immunology, 65: 118-126.
Nigam, S. C., Tsao, IF., Sakoda, A., 1988. Techniques for preparing hydrogel membrane capsules. Biotechnology Techniques, 2: 271.
O’Neill, K. R., Jones, S.H., Grimes, D.J., 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Applied and Environmental Microbiology, 58: 3257-3262.
Oliver, J. D., 1995. The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiology Letters, 133: 203-208.
Ong, B., 1988. Characteristics of bacteria isolated from diseased grouper, Epinephelus salmonids. Aquaculture, 73: 3257-3262
Oorschot RW, Booms GH, Latscha T, Boon JH., 1995. A study of the cause of massive mortality among marine-cultured rainbo trout (Oncorrhynchus mykiss, Walbaum) in a fish farm in the southwestern Netherlands. Tijdschr Diergeneeskd., 120:531-534.
Joosten, P. H. M., Tiemersma, E., Theels, A., Caumartin-Dhieux, C., Rombout, J. H. W. M., 1997. Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish and Shellfish Immunology, 7: 471–485.
Pszczola, D. E., 1997. Curdlan differs from other gelling agents. Food Technology, 51: 30.
Quentel, C., Vigneulle, M., 1997. Antigen uptake and immune responses after immersion vaccination. Developments in Biological Standardization, 90: 69-78.
Rajendran, P., Subramani, P. A., Michael, D., 2016. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. Fish and Shellfish Immunology, 58: 220-228.
Rasheed, V. M., Plumb,J.A., 1984. Pathogenicity of non-haemolytic group B Streptococcus spp. in gulf kill fish Fundulus grandis Baird and Girard. Aquaculture, 37: 97-105.
Rezaei Mokarram, A., Mortazavi1, S.A., Mohammadpour Dounighi, N., Zolfagharian, H., Alonso, M.J., 2008. Preparation and in-vitro evaluation of sodium alginate microspheres containing diphtheria toxoid as new vaccine delivery. Archives of Razi Institute, 63(2): 19-28.
Simon, R. B., Lydia, L., Sophie, D. C., 1995. Mechanical and functional properties of cellulose acetate phthalate (CAP) coatings obtained from neutralized aqueous solutions. International Journal of Pharmaceutics, 114: 205-213.
Smith DR, W. R., 2006. Glutaraldehyde exposure and its occupational impact in the health care enviroment. Enviromental Health and Preventive Medicine, 11: 3-10.
Stenvik, G.-E., Butenko, M. A., Urbanowicz, B. R., Rose, J. K. C., & Aalen, R. B., 2006. Overexpression of inflorescence deficient in abscission activates cell separation in vestigial abscission zones in arabidopsis. The Plant Cell, 18(6): 1467-1476.
Bowersock, T.L., Hogenesch, H., Suckow, M., Porter, R.E., Jackson, R., Park, H., Park, K., 1996. Oral vaccination with alginate microsphere systems. Journal of Controlled Release, 39(2): 209-220.
Tian, J., Yu, J., 2011. Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish and Shellfish Immunology, 30(1): 109-117.
Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., Vincendon, M., Vottero, P., 2000. The influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41: 2463-2469.
Toranzo, A. E., Masgarinos, B., Romalde, J.L., 2005. A review of main bacterial fish diseases in mariculture system. Aquaculture, 246: 37-61.
Tsigo, I., Bouriotis, V., 1995. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. The Journal of Biological Chemistry, 270: 26280-26291.
Xue, R., Liu, L., Cao, G., Xu, S., Li, J., Zou, Y., Chen, H., Gong, C., 2013. Oral vaccination of BacFish-vp6 against grass carp reovirus evoking antibody response in grass carp. Fish and Shellfish Immunology, 34(1): 348-355.
Yu, D., Wang, G., Xie, J., Guan, S., Hu, Z., WU, l., 2007. Activity change of protease and amylase in digestive organs of grouper, Epinephelus coioides. Journal of Zhejiang Ocean University (Natural Science), 26: 246-251.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 創傷弧菌與腸炎弧菌二價疫苗及其免疫雞蛋黃 IgY 應用於養殖石斑魚之研究
2. 應用溶藻弧菌疫苗及其免疫雞蛋黃IgY於石斑魚養殖之研究
3. 台灣西部沿海野生及養殖黑棘鯛(Acanthopagrus schlegelii)之生殖生物學比較
4. 白蝦Litopenaeus vannamei在不同密度下先天性免疫反應及對溶藻弧菌與白斑病毒抵抗
5. 以生物殼材包覆福馬林不活化及超音波震碎腸炎及創傷弧菌作為口服疫苗對養殖石斑之保護效果
6. 飼料中添加枯草桿菌E20以提高雲紋石斑Epinephelus moara的成長和對溶藻弧菌的抗病力
7. 微鹼性電解水對腸炎弧菌與金黃色葡萄球菌之生長及殺菌機制探討
8. 褐藻醣膠修飾幾丁聚醣/褐藻酸鈉支架控制釋放鹼性纖維母細胞生長因子在傷口修復之應用
9. 石斑魚肌肉型肌酸激酶於神經壞死病毒感染過程中角色之探討
10. 造成白蝦急性肝胰臟壞死綜合症(AHPND) 腸炎弧菌之病原性及毒力因子之探討
11. 飼料中添加珠子草對白蝦非特異性免疫反應、成長及抵抗溶藻弧菌能力之影響
12. 飼料中添加葡聚多醣體及羥四環黴素對龍虎斑非特異性免疫反應及抵抗溶藻弧菌能力之影響
13. 腸炎弧菌抗氧化基因katE1(VPA1418)調控機制
14. 台灣致病性腸炎弧菌之預測生長模型建立與驗證: 以熟蝦為例
15. 從三角褐指藻在缺乏磷酸鹽逆境反應的研究到高效率矽藻表現系統的開發