跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖佳汝
研究生(外文):Liao, Chia-Ju
論文名稱:烯酮類有機生物標幟物分析所揭示之西北太平洋自末次冰期以來的古海洋 (岩心 LV 63-41-2)
論文名稱(外文):Paleoceanographic changes since the last glacial as revealed by analysis of alkenone organic biomarkers from the Northwest Pacific (core LV 63-41-2)
指導教授:陳明德陳明德引用關係
指導教授(外文):Chen, Min-Te
口試委員:尤柏森張英如
口試委員(外文):Yu, Pai-SenChang, Ying-Ju
口試日期:2017-02-10
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:西北太平洋烯酮類不飽和有機物海表溫度新仙女木事件
外文關鍵詞:Northwestern Pacificalkenonesea surface temperatureBølling-AllerødYounger Dryas
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
西北太平洋位於冷暖洋流交會的副極區,受到氣候事件、海冰、漂冰、洋流的影響甚大,因此在末次冰期以來,形成特殊且複雜的古海洋環境。本研究為了解西北太平洋古海洋變化,利用探取自北太平洋與白令海水團交會處的岩心LV 63-41-2(52˚34.1’ N, 160˚00.6’ E;水深1924公尺),分析烯酮類(alkenone)不飽和有機物重建末次冰期以來的海表溫度(Sea Surface Temperature, SST)變化,藉此來揭示洋流,海冰、漂冰、生物生產力與海冰覆蓋範圍的相互關係。結果顯示於16~27 ka BP,鈣板藻生產力較低及烯酮類之淡水指標(C37:4 %)較高,這可能代表此時有大量的淡水注入,與海冰融化和洋流帶來白令海海冰融水在海表面形成低溫且低鹽的水層層化現象。淡水形成良好的海水分層,並阻擋表層水的垂直混合作用,使得較深層的營養鹽無法上湧,故導致鈣板藻生產力降低。依本研就究的年代模式顯示,波令–阿勒羅德(Bølling-Allerød, B/A)暖期的SST上升可分為緩慢升溫的早期與快速升溫的晚期;而烯酮類之淡水指標(C37:4 %)顯示B/A暖期可能有大量淡水注入。本研究推論B/A暖期早期雖有大量淡水輸入,但海水分層狀況較末次冰期差且深度淺,較末次冰期海水可獲得較多的營養鹽上湧,使得鈣板藻生產力明顯增加。B/A暖期晚期海表溫快速上升,位於本岩心站位北方的勘察加半島沿岸海冰崩解成漂冰,融化的淡水降低表層水的垂直混合作用,使得自次表層水上湧的營養鹽降低,因而造成鈣質生物生產力由高轉低。在新仙女木事件(Younger Dryas, YD)時期,SST先上升再降低,烯酮類淡水指標(C37:4 %)顯示淡水注入較少,據此本研究推測西北太平洋於YD早期,海表溫為快速升高,鈣板藻生產力降低的狀態。
Sea surface temperature (SST) records from the subarctic Northwestern (NW) Pacific are ideal for reconstructing regional paleoceanographic changes sensitive to global climate change. In this study, used a core LV 63-41-2 (52.56˚ N, 160.00˚ E; water depth 1924 m) retrieved from a high sedimentation site, in which the interactions of the Bering Sea and the warm water mass from the NW Pacific are highly dynamic. I analyzed the alkenone of coccolithophorids secreted and preserved in the sediments of the core. Our results indicate that the alkenone concentrations are low prior to 16~27 ka BP, suggesting low productivity of coccolithophorids during the last glacial. High glacial C37:4 alkenone concentrations in the core imply large amount of fresh water influencing the surface water of the NW Pacific with a reaching to the Site LV 63-41-2. This study inferred that the low salinity water may be formed from the ice-melting water on site and/or brought by the surface current from the Bering Sea, and is efficient in producing strong water stratification condition. The stratification weakens vertical mixing of the upper water column, that in turn decreases the nutrients upwelled from deep to the surface therefores causes low productivity of coccolithophorids. The LV 63-41-2 alkenone-SST shows a gradual increase, associated with high C37:4 alkenone concentrations during the early Bølling-Allerød (B/A) period. It implies a weakened stratification and much stronger nutrient upwelling than the glacial. The late B/A period is characterized by an abrupt warming with possibly more melting sea ices in the Bering Sea and the coast near the Kamchatka Peninsula. The large amount of fresh water lens formed during the ice melting might have ceased vertical mixing and upwelling in the upper water column as evidenced by a decline of biological productivity of both calcerous and soliceous organism during late B/A. Based on the age model of LV 63-41-2, this study suggests an early warming and low productivity in the NW Pacific that is coincident with a rapid cooling in most of the Northern Hemisphere high latitudes during the Younger Dryas.
摘要…………………………………………………………………………………I
Abstract……………………………………………………………………………II
目次…………….…………….……….….………….….………………………..III
圖目次……………………………………………………………………………IV
表目次………………………………………………………………………IV
第壹章 緒論…...………………………………………………………….……1
1.1前人研究…...………………………………………………………….……1
1.2區域水文和環境背景…………..……………………………………….……2
1.3研究目的……………………………...……………………………….……2
第貳章 材料與方法……..…………………………………………………………4
2.1研究材料………………………………...………..……….…………………..4
2.2年代模式的建立………………………………...………..……….…………..4
2.3烯酮類不飽和有機物…………………………...………..……….…………..4
2.4分析方法………………………………...………..……….…………………..6
第參章 研究結果……..…………………………………………………………8
3.1年代模式與沉積速率…………………...………..……….…………………..8
3.2 鈣板藻生產力指標C37 alkenones……………...………..……….…………..8
3.3 烯酮類不飽和有機物西北太平洋U_37^k'- SST古海表溫度重建…..………….9
3.4 淡水指標C37:4…………………………………..……….…………………..9
第肆章 討論…………………………………………………………………………10
4.1 年代模式..………….……...………….....……..……….………………….10
4.2 淡水來源、海水分層與生物生產力的關係……….…..……….…………..11
4.3末次冰期以來亞北極西北太平洋的古海洋變遷….....…………………..11
第伍章 結論……………………………………………………………………16
參考文獻……………………………………………………………………………17
圖說…………………………………………………………………………………21
附錄…………………………………………………………………………………38
Barron, J. A., Heusser, L., Herbert, T., and Lyle, M., 2003, High-resolution climatic evolution of coastal northern California during the past 16,000 years: Paleoceanography, v. 18, no. 1, doi: 10.1029/2002PA000768.
Blaauw, M., and Christen, J. A., 2013, Bacon Manual -v2. 2: Blaauw, M., Wohlfarth, B., Christen, JA, Ampel, L., Veres, D., Hughen, KA, Preusser, F., et al.2010,-Were last glacial climate events simultaneous between Greenland and France, p. 387-394.
Brassell, S., Eglinton, G., Marlowe, I., Pflaumann, U., and Sarnthein, M., 1986, Molecular stratigraphy: A new tool for climatic assessment: Nature, v. 320, no. 6058, p. 129-133.
Caissie, B. E., Brigham-Grette, J., Lawrence, K. T., Herbert, T. D., and Cook, M. S., 2010, Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records: Paleoceanography, v. 25, doi: 10.1029/2008PA001671.
Clement, A. C., and Peterson, L. C., 2008, Mechanisms of abrupt climate change of the last glacial period: Reviews of Geophysics, v. 46, no. 4, doi: 10.1029/2006RG000204.
Feely, R., Sabine, C., Lee, K., Millero, F. J., Lamb, M., Greeley, D., Bullister, J., Key, R., Peng, T. H., and Kozyr, A., 2002, In situ calcium carbonate dissolution in the Pacific Ocean: Global Biogeochemical Cycles, v. 16, no. 4, doi: 10.1029/2002GB001866.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J., 2004, Impact of anthropogenic CO2 on the CaCO3 system in the oceans: Science, v. 305, no. 5682, p. 362-366.
Goni, M. F. S., and Harrison, S. P., 2010, Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology: Quaternary Science Reviews, v. 29, no. 21, p. 2823-2827.
Gorbarenko, S. A., 1996, Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the northwestern Pacific and its marginal seas: Quaternary Research, v. 46, no. 3, p. 230-250.
Gorbarenko, S. A., Shi, X., Chen, M.-T., Malakhova, G. Yu., Bosin, A. A., Liu, Y., and Zou, J., 2016, Centennial to millennial climate variability in the far northwestern Pacific (off Kamchatka) and its linkage to East Asian monsoon and North Atlantic from the Last Glacial Maximum to the Early Holocene: Climate of the Past Discuss., doi:10.5194/cp-2016-102. (in review)
Harada, N., Shin, K. H., Murata, A., Uchida, M., and Nakatani, T., 2003, Characteristics of alkenones synthesized by a bloom of emiliania huxleyi in the Bering Sea: Geochimica et Cosmochimica Acta, v. 67, no. 8, p. 1507-1519.
Harrison, P., Boyda, P., Varela, D., Takeda, S., Shiomoto, A., and Odate, T., 1999, Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres: Progress in Oceanography, v. 43, no. 2, p. 205-234.
Katsuki, K., and Takahashi, K., 2005, Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary: Deep-Sea Research Part II: Topical Studies in Oceanography, v. 52, no. 16-18, p. 2110-2130.
Kohfeld, K. E., and Chase, Z., 2011, Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean: Quaternary Science Reviews, v. 30, no. 23-24, p. 3350-3363.
Kuzmin, Y., Burr, G., Gorbunov, S., Rakov, V., and Razjigaeva, N., 2007, A tale of two seas: Reservoir age correction values (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea): Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 259, no. 1, p. 460-462.
Méheust, M., Stein, R., Fahl, K., Max, L., and Riethdorf, J.-R., 2016, High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years: Geo-Marine Letters, v. 36, no. 2, p. 101-111.
Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I., and Rosell-Melé, A., 1998, Calibration of the alkenone paleotemperature index U_37^(k') based on core-tops from the eastern South Atlantic and the global ocean (60 N-60 S): Geochimica et Cosmochimica Acta, v. 62, no. 10, p. 1757-1772.
Max, L., Riethdorf, J. R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K., Nurnberg, D., Matul, A., and Mollenhauer, G., 2012, Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years: Paleoceanography, v. 27, p. 1-20.
Max, L., Lembke-Jene, L., Riethdorf, J.-R., Tiedemann, R., Nürnberg, D., Kühn, H., and Mackensen, A., 2014, Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation: Climate of the Past, v. 10, p. 591-605.
Prahl, F. G., and Wakeham, S. G., 1987, Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment: Nature, v. 330, no. 6146, p. 367-369.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M., 2013, IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP: Radiocarbon, v. 55, no. 4, p. 1869-1887.
Rosell-Melé, A., Carter, J., and Eglinton, G., 1994, Distributions of long-chain alkenones and alkyl alkenoates in marine surface sediments from the North East Atlantic: Organic Geochemistry, v. 22, no. 3-5, p. 501-509.
Rosell‐Melé, A., Bard, E., Emeis, K. C., Grimalt, J., Müller, P., Schneider, R., Bouloubassi, I., Epstein, B., Fahl, K., and Fluegge, A., 2001, Precision of the current methods to measure the alkenone proxy U_37^(k') and absolute alkenone abundance in sediments: Results of an interlaboratory comparison study: Geochemistry, Geophysics, Geosystems, v. 2, no. 7, doi: 10.1029/2000GC000141.
Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., Narita, H., and Sakamoto, T., 2004a, Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr: Paleoceanography, v. 19, no. 1, doi: 10.1029/2002PA000808.
Seki, O., Kawamura, K., Ikehara, M., Nakatsuka, T., and Oba, T., 2004b, Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs: Organic Geochemistry, v. 35, no. 3, p. 347-354.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., and Jouzel, J., 2008, High-resolution Greenland ice core data show abrupt climate change happens in few years: Science, v. 321, no. 5889, p. 680-684.
Stuiver, M., and Reimer, P. J., 1993, Extended 14C Data-Base and Revised Calib 3.0 14C Age Calibration Program: Radiocarbon, v. 35, p. 215-230.
Ternois, Y., Kawamura, K., Ohkouchi, N., and Keigwin, L., 2000, Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr: Geochemical Journal, v. 34, no. 4, p. 283-293.
Volkman, J., Eglinton, G., Corner, E., and Sargent, J., 1980, Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi: Physics and Chemistry of the Earth, v. 12, p. 219-227.
WOA, 1998. World Ocean Atlas 1998, version 2,
http://www.nodc.noaa.gov/oc5/woa98.html. Technical report, National Oceanographic Data Center, Silver Spring, Maryland.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson, A., 2010, Millennial-scale variability during the last glacial: The ice core record: Quaternary Science Reviews, v. 29, no. 21, p. 2828-2838.
Yamamoto, M., Yamamuro, M., and Tada, R., 2000, Late Quaternary records of organic carbon, calcium carbonate, and biomarkers from site 1016 off point conception, California margin: Proceedings of the Ocean Drilling Program. Scientific results, v. 167, p. 183-194.
Zhang, J., Woodgate, R., and Moritz, R., 2010, Sea ice response to atmospheric and oceanic forcing in the Bering Sea: Journal of physical oceanography, v. 40, no. 8, p. 1729-1747.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top