跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃舜揚
研究生(外文):Huang, Shun-Yang
論文名稱:利用頻率域分析方法延伸時域反射儀應用於土壤LNAPL測量之研究
論文名稱(外文):Using Frequency Domain Analysis to Extend the Measurement of Time Domain Refelctometry on LNAPL Content in Soils
指導教授:邱永嘉
指導教授(外文):Chiu, Yung-Chia
口試委員:張英如許少瑜張竝瑜
口試委員(外文):Chang, Ying-JuHsu, Shao-YiuChang, Ping-Yu
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:101
中文關鍵詞:時域反射儀介電常數LNAPL傅立葉轉換頻譜密度混合模式
外文關鍵詞:time domain reflectometrydielectric constantLNAPLFourier transformationpower spectral densitymixing model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
摘要

隨著工業的發展,有機化合物被大量應用於工業製造及一般生活之中,由於早年環保議題較不重視,加上沒有完整的法律規範,因此任意傾倒的廢液及儲槽設施的洩漏,造成後續許多土壤與地下水污染等問題。在眾多有機化合物中,輕質非水相液體(light –non-aqueous phase liquid,LNAPL)為密度小於水且與水不互溶的液體,LNAPL一旦滲入土壤之後,容易聚集於地下水面之上,並隨著地下水流動,造成分佈面積廣泛,污染範圍界定上相當不易,也導致後續污染整治規劃的困難。時域反射儀(time domain reflectometry, TDR)為一種非破壞性的地球物測量方法,量測時間極短、機動性高,能在短時間內進行大面積的施測,因此,若能將其應用於LNAPL汙染範圍調查之中,將有助於污染場址整治工作之進行。本研究選用TDR6050X,以三根式探頭進行實驗,分別測量自來水、石英標準砂、大陸砂、食用油、汽油等樣品,由於乾砂與LNAPL的介電常數值十分相近,以傳統的分析方式不易分辨LNAPL,為提升TDR於LNAPL量測時之適用性,本研究嘗試將TDR反射電壓波形圖,依序進行傅立葉轉換,獲得各樣品的頻譜圖之後,針對不同頻率的頻譜密度進行能量積分,最後透過能量面積的差異進行LNAPL濃度高低的判識。為評估上述分析方法之適應性,本研究透過砂箱進行一系列的實驗,實驗結果顯示,在砂、空氣、水或砂、空氣、LANPL三相混合中,含水量或LNAPL濃度越高之頻譜圖所得到的能量面積越小,且與介電常數間有非常良好的線性關係;而在砂、空氣、水及LNAPL四相混合實驗中,以含水量能量面積為基礎,搭配一倍標準差之信賴區間進行劃分,能夠初步判斷土壤是否受到LNAPL污染的情況,然而LNAPL含量的高低仍無法準確分辨。進一步加入混合模式(mixing- model)計算各樣本的體積含量,並透過模式擬合的過程,則可初步推估LNAPL之濃度。經由本研究之成果,驗證以傅立葉轉換、頻譜密度能量面積積分及混合模式擬合的方法,可延伸TDR的應用於LNAPL量測之中,期望未來能應用於營運中的加油站或工廠,針對LNAPL汙染範圍調查之困境提供解決之道。
Abstract

When organic solvents being used by the industry are released to our daily life, their wasted solutions caused serious environment problem. Among many organic compounds, light – non-aqueous phase liquid (LNAPL) is one of the most common contamiants in soils. LNAPL once leaks into the soil, it is easily enriched above the ground water level, and flow with the groundwater, separating widely distributed. The transportation of LNAPL in soil and groundwater is very complicated and not easy to detect and remedy. Time-domain reflectometer (TDR) is a non-destructive geophysical method, and its short measuring time and high flexibility can survey large areas quickly. If TDR could be applied to LNAPL measurement, it advantages can improve contamined sites survey and remediation work. In this study, TDR6050X is used for the laboratory experiments, and water, quartz sand, field sand, soybean oil and gasolin are selected as samples for testing. The dielectric constant measured by TDR between dry sand and LNAPL are very close, so they are not easy to be distinguished by traditional time-domain method. In order to promote the measurement, the Fourier transformation is applied to the TDR waveforms for analysis, and then power spectral densities obtained from different samples are integrated with different frequencies to determine the LNAPL content. To evalute the feasibility of proposed method, a series of experiments through the sand box are conducted. In the experiments of three-phase system, i.e., mixed of sand, air and water/LANPL, water and LNAPL contents show a linear relationship between the dielectric constant and the energy area of power spectral density. In the experiments of four-phase system, determination of soil whether contaminated with LNAPL can be verified based on the energy area of water content with one standard deviation. However, the quantification of LNAPL content is not very accurate. With shifting the energy area of LNAPL content and fitting process of mixing model, LNAPL content can be estimated through the fitted mixing model. According to the results obtained from this study, the combination of Fourier transform, the integration of power spectral density, and mixng model fitting to extend the TDR measurement in LNAPL content is verified.The fast measurement procedure developed in this study can be applied to gas stations or factories contamined by LNAPL and improve the capability of survey.
目錄

摘要 I
Abstract II
致謝 III
目錄 IV
圖次 VI
表次 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 文獻回顧 2
1.4 研究流程與架構 4
第二章 研究方法 6
2.1 TDR 量測原理 6
2.1.1 TDR反射波形 7
2.1.2 基本電磁學性質 8
2.1.3 TDR含水量測量原理 9
2.1.4 TDR探頭形式與有效測量範圍 10
2.2 混合模式 12
2.3 傅立葉轉換 13
2.4 S11函數 16
2.5 傅立葉轉換-面積積分法 19
2.6 地質材料 20
2.7 LNAPL特性 20
第三章 純樣本測量 23
3.1 自來水測量 24
3.2 食用油測量 25
3.3 汽油 26
3.4 砂樣 27
3.5 純樣本測量之比較 30
3.6 自來水與食用油之不同深度測量 31
3.6.1自來水之不同深度量測 31
3.6.2食用油之不同深度測量 34
第四章 三相混合實驗 37
4.1 含水量實驗 37
4.1.1 石英粗砂 38
4.1.2 大陸砂 44
4.2 含油量測量 50
4.2.1石英粗砂+食用油 51
4.2.2 大陸砂+食用油 57
4.2.3 大陸砂+汽油 63
4.3 綜合比較 69
4.3.1含水量綜合比較 69
4.3.2含油量綜合比較 69
第五章 四相混合測量 70
5.1食用油與含水石英砂測量與結果 70
5.2 食用油與含水大陸砂測量與結果 79
5.3 汽油與含水大陸砂測量與結果 86
5.4 LNAPL含量推估 89
第六章 討論 93
6.1 不同頻率頻譜密度能量面積積分 93
6.2 TDR探頭對於實驗結果之影響 94
6.3 混合模式α值之探討 94
第七章 結論與建議 96
7.1 結論 96
7.2 建議 97
參考文獻 98
參考文獻

1. Abriola, L. M., & Pinder, G. F. (1985). A Multiphase Approach to the Modeling of Porous Media Contamination by Organic Compounds 1. Equation Development. Water Resources Research, 21(1), 11-18.
2. Ajo-Franklin, J. B., Geller, J. T., & Harris, J. M. (2004). The dielectric properties of granular media saturated with DNAPL/water mixtures. Geophysical Research Letters, 31(17), 4.
3. Alessandro, C., Antonio, C., Giovanna. D., & Angelo, S. (2016). Estimating Nonaqueous-Phase Liquid Content in Variably Saturated Soils Using Time Domain Reflectometry. Vadose Zone Journal, 15(5).
4. Arsoy, S., Ozgur, M., Keskin, E., & Yilmaz, C. (2013). Enhancing TDR based water content measurements by ANN in sandy soils. Geoderma, 195, 133-144.
5. Brichak, J., Gardner, C. G., Hipp, J. E., & Victor, J. M. (1974). High Dielectric Constant Microwave Probes for Sensing Soil Moisture. Proceeding of the IEEE, 62(1), 93-98.
6. Cataldo, A., Catarinucci, L., Tarricone, L., Attivissimo, F., & Trotta, A. (2007a). A frequency-domain method for extending TDR performance in quality determination of fluids. Measurement Science and Technology, 18(3), 675-688.
7. Cataldo, A., Piuzzi, E., Cannazza, G., & De Benedetto, E. (2009). Dielectric Spectroscopy of Liquids Through a Combined Approach: Evaluation of the Metrological Performance and Feasibility Study on Vegetable Oils. Ieee Sensors Journal, 9(10), 1226-1233.
8. Cataldo, A., Piuzzi, E., De Benedetto, E., & Cannazza, G. (2014). Experimental Characterization and Performance Evaluation of Flexible Two-Wire Probes for TDR Monitoring of Liquid Level. Ieee Transactions on Instrumentation and Measurement, 63(12), 2779-2788.
9. Cataldo, A., Tarricone, L., Attivissimo, F., & Trotta, A. (2007b). A TDR method for real-time monitoring of liquids. Ieee Transactions on Instrumentation and Measurement, 56(5), 1616-1625.
10. Cataldo, A., Tarricone, L., Attivissimo, F., & Trotta, A. (2008). Simultaneous measurement of dielectric properties and levels of liquids using a TDR method. Measurement, 41(3), 307-319.
11. Cataldo, A., Vallone, M., Tarricone, L., & Attivissimo, F. (2008). An evaluation of performance limits in continuous TDR monitoring of permittivity and levels of liquid materials. Measurement, 41(7), 719-730.
12. Chenaf, D., & Amara, N. (2001). Time domain reflectometry for the characterization of diesel contaminated soils. TDR 2001: The Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications. ITI. 394-408.
http://www.iti.northwestern.edu/tdr/tdr2001/proceedings/
13. Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics 1. Alternating Current Characteristics. Journal of Chemical Physics, 9, 341-351.
14. Delin, G. N., & Herkelrath, W. N. (2005). Use of soil moisture probes to estimate ground water recharge at an oil spill site. Journal of the American Water Resources Association, 41(6), 1259-1277.
15. Ewing, R. P., & Berkowitz, B. (1998). A generalized growth model for simulating initial migration of dense non-aqueous phase liquids. Water Resources Research, 34(4), 611-622.
16. Friel, R., & Or, D. (1999). Frequency analysis of time-domain reflectometry (TDR) with application to dielectric spectroscopy of soil constituents. Geophysics, 64(3), 707-718.
17. Haridy, S. A., Persson, M., & Berndtsson, R. (2004). Estimation of LNAPL saturation in fine sand using time-domain reflectometry. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 49(6), 987-1000.
18. Heimovaara, T. J. (1994). Frequency domain analysis of time domain reflectometry waveforms 1. Measurement of the complex dielectric permittivity of soils. Water Resources Research, 30(2), 189-199.
19. Heimovaara, T. J. (2001). Frequency domain modeling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. TDR 2001: The Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications. ITI. 9-21. http://www.iti.northwestern.edu/tdr/tdr2001/proceedings/
20. Heimovaara, T. J., Bouten, W., & Verstraten, J. M. (1994). Frequency domain analysis of time domain reflectometry waveforms 2. A four-component complex dielectric mixing model for soil. Water Resources Research, 30(2), 201-209.
21. Heimovaara, T. J., deWinter, E. J. G., vanLoon, W. K. P., & Esveld, D. C. (1996). Frequency-dependent dielectric permittivity from 0 to 1 GHz: Time domain reflectometry measurements compared with frequency domain network analyzer measurements. Water Resources Research, 32(12), 3603-3610.
22. Herkelrath, W. N., & Delin, G. (2001). Long-term monitoring of soil-moisture in a harsh climate using reflectometer and TDR probes. TDR 2001: The Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications.ITI.262-272.
http://www.iti.northwestern.edu/tdr/tdr2001/proceedings/
23. Jones, S. B., & Or, D. (2004). Frequency domain analysis for extending time domain reflectometry water content measurement in highly saline soils. Soil Science Society of America Journal, 68(5), 1568-1577.
24. Jones, S. B., Wraith, J. M., & Or, D. (2002). Time domain reflectometry measurement principles and applications. Hydrological Processes, 16(1), 141-153.
25. Moroizumi Toshitsugu & Sasaki Yumi. (2008). Estimating the Nonaqueous-Phase Liquid Content in Saturated Sandy Soil Using Amplitude Domain Reflectometry. Soil Science Society of America Journal, 72(6), 1520-1526.
26. Nadler, A., Green, S. R., Vogeler, I., & Clothier, B. E. (2002). Horizontal and vertical TDR measurements of soil water content and electrical conductivity. Soil Science Society of America Journal, 66(3), 735-743.
27. Ng, C. O., Mei, C. C., & Ostendorf, D. W. (1999). A model for stripping multicomponent vapor from unsaturated soil with free and trapped residual nonaqueous phase liquid. Water Resources Research, 35(2), 385-406.
28. Nicolson, A. M. (1973). Forming the fast fourier transform of a step response in time-domain metrology. Electronics Letters, 9(14), 317-318.
29. Noborio, K. (2001). Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Computers and Electronics in Agriculture, 31(3), 213-237.
30. O`Connor, K. M. (2001). Use of TDR to monitor changes in ground water level and ground oil thickness. TDR 2001: The Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications. ITI. 409-416.
http://www.iti.northwestern.edu/tdr/tdr2001/proceedings/
31. Olchawa, A., & Kumor, M. (2008). Time Domain Reflectometry (TDR) – Measuring Dielectric Constant of Polluted Soil to Estimate Diesel Oil Content. Archives of Hydro Engineering and Environmental Mechanics, 55 (1–2), 55–62.
32. Persson, M., & Berndtsson, R. (2002). Measuring nonaqueous phase liquid saturation in soil using time domain reflectometry. Water Resources Research, 38(5), 8.
33. Piuzzi, E., Cataldo, A., & Catarinucci, L. (2009). Enhanced reflectometry measurements of permittivities and levels in layered petrochemical liquids using an "in-situ" coaxial probe. Measurement, 42(5), 685-696.
34. Robinson, D. A. (2004). Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method. Vadose Zone Journal, 3, 705-713.
35. Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., & Friedman, S. P. (2003). A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone Journal, 2(4), 444-475.
36. Roth, K., Schulin, R., Fluhler, H.,& Attinger, W. (1990). Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resources Research. 26(10). 2267-2273.
37. Steinwand, A. L., Harrington, R. F., & Or, D. (2006). Water balance for Great Basin phreatophytes derived from eddy covariance, soil water, and water table measurements. Journal of Hydrology, 329(3-4), 595-605.
38. Topp, G. C., & Ferre, T. P. (2005). Time-domain reflectometry. Elsevier Ltd, 174-181.
39. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16(3), 574-582.
40. Wraith, J. M., & Or, D. (1999). Temperature effects on soil bulk dielectric permittivity measured by time domain refiectometry: Experimental evidence and hypothesis development. Water Resources Research, 35(2), 361-369.
41. Zhan, L. T., Mu, Q. Y., Chen, Y. M., & Chen, R. P. (2013). Experimental study on applicability of using time-domain reflectometry to detect NAPLs contaminated sands. Science China-Technological Sciences, 56(6), 1534-1543.
42. 劉嘉志 (2008). 地表下NAPL監測技術-薄膜擴散系統採樣器之發展. (碩士) 國立中央大學,桃園市.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top