跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅雅嬬
研究生(外文):Lo, Ya-Ju
論文名稱:固態反應對半導體異質結構光觸媒與氣體感測之影響
論文名稱(外文):Effects of solid-state reaction for semiconductor heterostructures on photocatalytic and gas-sensing properties
指導教授:梁元彰
指導教授(外文):Liang, Yuan-Chang
口試委員:魏大華張高碩黃榮潭
口試委員(外文):Wei, Da-HuaChang, Kao-ShuoHuang, Rong-Tan
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:固態反應顯微結構光催化特性氣體感測響應
外文關鍵詞:solid-state reactionmicrostructuresphotoactivitygas sensing response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究高溫固態反應對ZnO-SnO2核-殼奈米柱在顯微結構、光學特性、光催化活性以及低濃度NO2氣體感測響應倍率之影響。在本研究中,透過結合水熱法以及真空濺鍍法合成ZnO-SnO2核-殼奈米柱。根據X光繞射以及穿透式電子顯微鏡分析結果,SnO2殼與ZnO核材料在900 ℃會產生高溫固態反應使超薄SnO2殼層轉換為三元的Zn2SnO4 (ZTO)相。此外,由電子顯微鏡影像可確定高溫固態反應伴隨表面粗糙化。相較之下,ZnO-ZTO核-殼奈米柱在表面處具有比ZnO-SnO2奈米柱更高的氧空缺密度。在含有ZnO-SnO2與ZnO-ZTO奈米柱的羅丹明B溶液之光降解結果比較下,ZnO-ZTO奈米柱比ZnO-SnO2奈米柱擁有更高的光催化活性。此外,相較於ZnO-SnO2奈米柱,當ZnO-ZTO奈米柱暴露於低濃度NO2氣體時展現更高的氣體感測響應倍率。ZnO-SnO2與ZnO-ZTO奈米柱之間顯微結構與光學特性顯著的差異解釋了本研究中所獲得之ZnO-ZTO奈米柱具有較佳光催化活性以及NO2氣體感測結果。
The effects of high-temperature solid-state reactions on the microstructures, optical properties, photoactivity, and low-concentration NO2 gas-sensing sensitivity of ZnO–SnO2 core–shell nanorods were investigated. In this study, the ZnO–SnO2 core–shell nanorods were synthesized through a combination of the hydrothermal method and vacuum sputtering. According to X-ray diffraction and transmission electron microscopy analyses, high-temperature solid-state reactions between the SnO2 shell and ZnO core materials at 900 ℃ engendered an ultrathin SnO2 shell layer for transforming into the ternary Zn2SnO4 (ZTO) phase. Moreover, surface roughening was involved in the high-temperature solidstate reactions, as determined from electron microscopy images. Comparatively, the ZnO–ZTO nanorods have a higher oxygen vacancy density near the nanostructure surfaces than do the ZnO–SnO2 nanorods. The photodegradation of rhodamine B dyes under simulated solar light irradiation in presence of the ZnO–SnO2 and ZnO–ZTO nanorods revealed that the ZnO–ZTO nanorods have a higher photocatalytic activity than do the ZnO–SnO2 nanorods. Furthermore, the ZnO–ZTO nanorods exhibited higher gassensing sensitivity than did the ZnO–SnO2 nanorods on exposure to low-concentration NO2 gases. The substantial differences in the microstructure and optical properties between the ZnO–SnO2 and ZnO–ZTO nanorods accounted for the photocatalytic activity and NO2 gas-sensing results obtained in this study.
摘要 I
Abstract II
目次 III
表次 V
圖次 VI
第一章 前言 1
第二章 文獻回顧 3
2-1半導體材料 3
2-1-1 氧化物半導體 3
2-1-2 氧化鋅(ZnO)結構與特性 4
2-1-3 二氧化錫(SnO2)結構與特性 4
2-2 低維度半導體材料 4
2-2-1 表面效應 5
2-2-2 尺寸效應 5
2-3 低維度奈米結構生長機制與製備方法 5
2-4 薄膜製程 6
2-4-1 化學氣相沉積法 6
2-4-2 脈衝雷射剝鍍法 7
2-4-3溶膠-凝膠法 7
2-4-4 濺鍍法 7
2-5 核-殼結構 8
2-6 固態反應 9
2-7 半導體材料之光催化降解原理與應用 9
2-8 半導體材料之氣體感測元件應用 10
第三章 實驗方法與流程 31
3-1 實驗流程 31
3-2 實驗藥品與設備 31
3-2-1 實驗藥品 31
3-2-2 實驗設備 31
3-3 材料製備程序 32
3-3-1 試片表面清潔 32
3-3-2 濺鍍法製備氧化鋅晶種層 32
3-3-3 水熱法製備一維氧化鋅奈米柱 32
3-3-4 濺鍍法製備ZnO-SnO2核-殼異質奈米柱結構 33
3-3-5 高溫退火處理製備ZnO-ZTO核-殼異質奈米柱結構 33
3-4 材料分析 34
3-4-1 掃描式電子顯微鏡分析 (Scanning Electron Microscope, SEM) 34
3-4-2 X光繞射分析 (X-ray Diffractometer, XRD) 34
3-4-3 穿透式電子顯微鏡分析 (Transmission Electron Microscope, TEM) 35
3-4-4 X光光電子能譜儀分析 (X-ray Photoelectron Spectrometer, XPS) 35
3-4-5 紫外光可見光分光光譜儀 (Ultraviolet-Visible Spectroscopy, UV-Vis) 35
3-4-6 光致發光能譜儀分析 (Photoluminescence, PL) 36
3-5 光降解特性分析 (Photodegradation) 36
3-5-1 羅丹明B (Rhodamine B, RhB)水溶液之調配 36
3-5-2 光降解試驗 36
3-6 氣體感測元件特性分析 (Gas Sensing Properties) 37
第四章 結果與討論 51
4-1 微結構分析 51
4-2 光電子化學能譜儀組成分析 52
4-3 光學特性分析 53
4-4 光降解特性分析 54
4-5 氣體感測特性分析 55
第五章 總結論 87
參考文獻 88
1 施敏, 李明達, 半導體元件物理與製作技術(第三版), 交通大學出版社, 2013.
2 游志樸, 半導體材料, 新京文開發出版股份有限公司, 2003.
3 Y. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu, R. Yuan and N. Li, J. Nanopart. Res., 2012, 14, 1-9.
4 M. Godlewski, E. Guziewicz, K. Kopalko, G. Łuka, M. I. Łukasiewicz, T. Krajewski, B. S. Witkowski and S. Gierałtowska, Low Temp. Phys., 2011, 37, 235-240.
5 Y. Lv, Z. Zhang, J. Yan, W. Zhao, C. Zhai and J. Liu, J. Alloy. Compd., 2017, 718, 161-169.
6 D. C. Look, Mater. Sci. Eng. B, 2001, 80, 383-387.
7 J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, Adv. Mater., 2006, 18, 2720-2724.
8 Z. H. Liu, L. L. Zhang, Q. F. Li, R. Zhang, Z. L. Xie, X. Q. Xiu and B. Liu, J. Korean Phys. Soc., 2016, 69, 1219-1224.
9 L. Duan, F. He, Y. Tian, B. Sun, J. Fan, X. Yu, L. Ni, Y. Zhang, Y. Chen and W. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 8161-8168.
10 Y. Qu, X. Huang, Y. Li, G. Lin, B. Guo, D. Song and Q. Cheng, J. Alloy. Compd., 2017, 698, 719-724.
11 C. Liu, L. Zhao, B. Wang, P. Sun, Q. Wang, Y. Gao, X. Liang, T. Zhang and G. Lu, J. Colloid Interf. Sci., 2017, 495, 207-215.
12 S. W. Kang, S. K. Mohanta, Y. Y. Kim and H. K. Cho, Cryst. Growth Des., 2008, 8, 1458-1460.
13 Y. W. Heo, V. Varadarajan, M. Kaufman and K. Kim, Appl. Phys. Lett., 2002, 81, 3046-3048.
14 C. F. Lin, M. S. Lin, C. C. Chen, P. H. Tsai and F. H. Wang, Surf. Coat. Technol., 2013, 231, 161-165.
15 J. H. Lee, K. H. Ko and B. O. Park, J. Cryst. Growth, 2003, 247, 119-125.
16 A. Purohit, S. Chander, A. Sharma, S. Nehra and M. Dhaka, Opt. Mater., 2015, 49, 51-58.
17 E. Przezdziecka, W. Lisowski, R. Jakiela, J. W. Sobczak, A. Jablonski, M. A. Pietrzyk and A. Kozanecki, J. Alloy. Compd., 2016, 687, 937-942.
18 W. Li, H. Xu, H. Yu, T. Zhai, Q. Xu, X. Yang, J. Wang and B. Cao, J. Alloy. Compd., 2017, 706, 461-469.
19 M. Batzill and U. Diebold, Prog. Surf. Sci., 2005, 79, 47-154.
20 O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, A. Kara, A. Ennaoui and A. Benyoussef, Sol. Energy Mater. Sol. Cells, 2016, 148, 34-38.
21 T. J. Liu, Z. G. Jin, J. X. Yang and L. R. Feng, J. Am. Ceram. Soc., 2008, 91, 1939-1944.
22 C. L. Yu, J. C. Yu, F. Wang, H. R. Wen and Y. Z. Tang, CrystEngComm, 2010, 12, 341-343.
23 Z. R. Dai, Z. W. Pan and Z. L. Wang, J. Am. Chem. Soc., 2002, 124, 8673-8680.
24 B. L. Zhu, X. Zhao, W. C. Hu, T. T. Li, J. Wu, Z. H. Gan, J. Liu, D. W. Zeng and C. S. Xie, J. Alloy. Compd., 2017, 719, 429-437.
25 H. C. Chiu and C. S. Yeh, J. Phys. Chem. C, 2007, 111, 7256-7259.
26 X. S. Peng, L. D. Zhang, G. W. Meng, Y. T. Tian, Y. Geng, B. Y. Lin and S. H. Sun, J. Appl. Phys., 2003, 93, 1760.
27 G. Shang, J. Wu, S. Tang, L. Liu, and X. Zhang, J. Phys. Chem. C, 2013, 117, 4345-4350.
28 H. Miyata, M. Itoh, M. Watanabe and T. Noma, Chem. Mater., 2003, 15, 1334.
29 Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Inorg. Chem., 2007, 46, 6980.
30 J. Y. Luo, W. Li, F. Chen, X. X. Chen, W. D. Li, H. Y. Wu,Y. J. Gao and Q. G. Zeng, Sens. Actuator B, 2014, 197, 81.
31 K. S. Kim, H. Jeong, M. S. Jeong and G. Y. Jung, Adv. Funct. Mater., 2010, 20, 3055.
32 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 2001, 2929, 1897-1899.
33 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 1964, 4, 89.
34 M. Li, X. Liu, T. Xu, Y. Nie, H. Li and C. Zhang, J. Magn. Magn. Mater., 2017, 439, 228-235.
35 H. Le, S. Chua, Y. Koh, K. Loh and E. Fitzgerald, J. Cryst. Growth, 2006, 293, 36-42.
36 W. Yu, P. Fang and S. Wang, Appl. Surf. Sci., 2009, 255, 5709-5713.
37 L. Wang, J. Dai, X. Liu, Z. Zhu, X. Huang and P. Wu, Ceram. Int., 2012, 38, 1873-1878.
38 X. Yan, E. Michael, S. Komarneni, J. R. Brownson and Z. F. Yan, Ceram. Int., 2013, 39, 4757-4763.
39 S. Duo, Y. Li, Z. Liu, R. Zhong, T. Liu and H. Xu, J. Alloy. Compd., 2017, 695, 2563-2579.
40 A. M. Holi, Z. Zainal, Z. A. Talib, H. N. Lim, C. C. Yap, S. K. Chang and A. K. Ayal, Optik, 2016, 127, 11111-11118.
41 J. K. Tsai, T. H. Meen, T. C. Wu, Y. D. Lai and Y. K. He, Microelectron. Eng., 2015, 148, 55-58.
42 P. Chand, A. Gaur and A. Kumar, J. Alloy. Compd., 2012, 539, 174-178.
43 C. Leyva-Porras, A. Toxqui-Teran, O. Vega-Becerra, M. Miki-Yoshida, M. Rojas-Villalobos, M. García-Guaderrama and J. Aguilar-Martínez, J. Alloy. Compd., 2015, 647, 627-636.
44 W. Chen, C. Takai, H. R. Khosroshahi, M. Fuji and T. Shirai, Ceram. Int., 2016, 42, 559-568.
45 K. Muthukrishnan, M. Vanaraja, S. Boomadevi, R. K. Karn, V. Singh, P. K. Singh and K. Pandiyan, J. Alloy. Compd., 2016, 673, 138-143.
46 H. Wang, Y. Sun, L. Fang, L. Wang, B. Chang, X. Sun and L. Ye, Thin Solid Films, 2016, 615, 19-24.
47 V. Gayou, B. Salazar-Hernandez, M. Constantino, E. R. Andrés, T. Díaz, R. D. Macuil and M. R. Lopez, Vacuum, 2010, 84, 1191-1194.
48 B. Laïk, S. Bourg, J. P. Pereira-Ramos, S. Bruyère and J. F. Pierson, Electrochim. Acta, 2015, 164, 12-20.
49 P. Chelvanathan, Y. Yusoff, F. Haque, M. Akhtaruzzaman, M. Alam, Z. Alothman, M. Rashid, K. Sopian and N. Amin, Appl. Surf. Sci., 2015, 334, 138-144.
50 M. Ferreira, J. Loureiro, A. Nogueira, A. Rodrigues, R. Martins and I. Ferreira, Mater. Today, 2015, 2, 647-653.
51 N. V. Toan, N. V. Chien, N. V. Duy, H. S. Hong, H. Nguyen, N. D. Hoa and N. V. Hieu, J. Hazard. Mater., 2016, 301, 433-442.
52 A. F. Khan, M. Mehmood, A. M. Rana, M. T. Bhatti and A. Mahmood, Chin. Phys. Lett., 2009, 7, 077803.
53 S. Bansal, D. K. Pandya, Subhash C. Kashyap and D. Haranath, J. Alloy. Compd., 2014, 583, 186-190.
54 M. Mansournia and L. Ghaderi, J. Alloy. Compd., 2017, 691, 171-177.
55 K. H. Ye, J. Y. Wang, N. Li, Z. Q. Liu, S. H. Guo, Y. P. Guo and Y. Z. Su, Inorg. Chem. Commun., 2014, 45, 116-119.
56 W. Kim, M. Baek and K. Yong, Sens. Actuator B, 2016, 223, 599-605.
57 B. Zhang, W. Fu, X. Meng, A. Ruan, P. Su and H. Yang, Ceram. Int., 2017, 43, 5934-5940.
58 Y. C. Kang and S. B. Park, Mater. Res. Bull., 2000, 35, 1143-1151.
59 X. Wang, J. Liao, H. Li, H. Wang and R. Wang, J. Colloid Interface Sci., 2016, 475, 149-153.
60 N. Tripathy, R. Ahmad, H. Kuk, D. H. Lee, Y. B. Hahn and G. Khang, J. Photochem. Photobiol. B, 2016, 161, 312-317.
61 J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao and Y. Liu, ACS Appl. Mater. Interfaces, 2011, 4, 424-430.
62 R. Lamba, A. Umar, S. Mehta and S. K. Kansal, J. Alloy. Compd., 2015, 653, 327-333.
63 J. Yuan, X. Zhang, H. Li, K. Wang, S. Gao, Z. Yin, H. Yu, X. Zhu, Z. Xiong and Y. Xie, Catal. Commun., 2015, 60, 129-133.
64 N. Wei, H. Cui, X. Wang, X. Xie, M. Wang, L. Zhang and J. Tian, J. Colloid Interface Sci., 2017, 498, 263-270.
65 B. Sun, G. Zhou, T. Gao, H. Zhang and H. Yu, Appl. Surf. Sci., 2016, 364, 322-331.
66 F. Chen, P. Ho, R. Ran, W. Chen, Z. Si, X. Wu, D. Weng, Z. Huang and C. Lee, J. Alloy. Compd., 2017, 714, 560-566.
67 S. Zhang, P. Zhang, Y. Wang, Y. Ma, J. Zhong and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 14975-14980.
68 M. M. Arafat, A. S. M. A. Haseeb, S. A. Akbar and M. Z. Quadir, Sens. Actuator B, 2017, 238, 972-984.
69 N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee and E. Comini, Sens. Actuator B, 2011, 160, 1346-1351.
70 C. W. Zou, J. Wang and W. Xie, J. Colloid Interface Sci., 2016, 478, 22-28.
71 X. Liu, J. Zhang, X. Guo, S. Wang and S. Wu, RSC Adv., 2012, 2, 1650-1655.
72 Y. Liu, S. Yao, Q. Yang, P. Sun, Y. Gao, X. Liang, F. Liu and G. Lu, RSC Adv., 2015, 5, 52252-52258.
73 汪建民, 材料分析, 中國材料科學學會發行, 2004.
74 Y. C. Liang, C. Y. Hu and Y. C. Liang, CrystEngComm, 2012, 14, 5579-5584.
75 Y. C. Liang and W. K. Liao, RSC Adv., 2014, 4, 19482-19487.
76 H. W. Kim, J. W. Lee, M. A. Kebede, H. S. Kim and C. Lee, Mater. Sci. Eng. B, 2009, 163, 44-47.
77 Y. F. Tu, Q. M. Fu, J. P. Sang, Z. J. Tan and X. W. Zou, Mater. Lett., 2012, 86, 80-83.
78 Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang and Y. Liu, J. Phys. Chem. C, 2010, 114, 7920-7925.
79 Y. C. Liang and T. Y. Lin, Nanoscale Res. Lett., 2014, 9, 344-350.
80 Y. C. Liang, C. Y. Hu, H. Zhong and J. L. Wang, Nanoscale, 2013, 5, 2346-2351.
81 Y. C. Liang, C. M. Lee and Y. J. Lo, RSC Adv., 2017, 7, 4724-4734.
82 J. Wang, W. Zhou and P. Wu, Appl. Surf. Sci., 2014, 314, 188-192.
83 Y. C. Liang, M. Y. Tsai, C. L. Huang, C. Y. Hu and C. S. Hwang, J. Alloy. Compd., 2011, 509, 3559-3565.
84 Y. C. Liang and X. S. Deng, J. Alloy. Compd., 2013, 569, 144-149.
85 M. Ebadi, Z. Zarghami and K. Motevalli, Phys. E, 2017, 87, 199-204.
86 Y. C. Liang and Y. C. Liang, Appl. Phys. A: Mater. Sci. Process., 2009, 97, 249-255.
87 A. Farhadi, M. R. Mohammadi and M. Ghorbani, J. Photochem. Photobiol. A, 2017, 338, 171-177.
88 S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee and M. H. Cho, Nanoscale, 2013, 5, 9238-9246.
89 J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang and Y. Dai, ACS Appl. Mater. Interfaces, 2012, 4, 4024-4030.
90 M. Kwiatkowski, R. Chassagnon, O. Heintz, N. Geoffroy, M. Skompska and I. Bezverkhyy, Appl. Catal. B, 2017, 204, 200-208.
91 Y. C. Liang and W. K. Liao, Appl. Surf. Sci., 2014, 292, 632-637.
92 Y. C. Liang and Y. R. Cheng, CrystEngComm, 2015, 17, 5801-5807.
93 B. Cheng, J. Xu, Z. Ouyang, X. Su, Y. Xiao and S. Lei, J. Mater. Chem. C, 2014, 2, 1808-1814.
94 R. Liu, Y. Huang, A. Xiao and H. Liu, J. Alloy. Compd., 2010, 503, 103-110.
95 M. Zhang, T. An, X. Hu, C. Wang, G. Sheng and J. Fu, Appl. Catal. A, 2004, 260, 215-222.
96 F. Kiriakidou, D. I. Kondarides and X. E. Verykios, Catal. Today, 1999, 54, 119-130.
97 H. Shi, M. Zhou, D. Song, X. Pan, J. Fu, J. Zhou, S. Ma and T. Wang, Ceram. Int., 2014, 40, 10383-10393.
98 Y. Li, C. Wang, H. Zheng, F. Wan, F. Yu, X. Zhang and Y. Liu, Appl. Surf. Sci., 2017, 391, 654-661.
99 Y. Li, Z. Tang, J. Zhang and Z. Zhang, J. Alloy. Compd., 2017, 708, 358-366.
100 Y. Lv, Y. Liu, Y. Zhu and Y. Zhu, J. Mater. Chem. A, 2014, 2, 1174-1182.
101 Y. C. Liang, T. Y. Lin and C. M. Lee, CrystEngComm, 2015, 17, 7948-7955.
102 Y. C. Liang and C. M. Lee, J. Appl. Phys., 2016, 120, 135306.
103 Y. C. Liang, C. C. Chung, Y. J. Lo and C. C. Wang, Materials, 2016, 9, 1014.
104 C. W. Na, H. S. Woo, I. D. Kim and J. H. Lee, Chem. Commun., 2011, 47, 5148-5150.
105 A. Stanoiu, C. E. Simiona and S. Somacescu, Sens. Actuator B, 2013, 186, 687-694.
106 I. S. Hwang, S. J. Kim, J. K. Choi, J. Choi, H. Ji, G. T. Kim, G. Cao and J. H. Lee, Sens. Actuator B, 2010, 148, 595-600.
107 L. Yang, C. Xie, G. Zhang, J. Zhao, X. Yu, D. Zeng and S. Zhanga, Sens. Actuator B, 2014, 195, 500-508.
108 H. Zhang, S. Wang, Y. Wang, J. Yang, X. Gao and L. Wang, Phys. Chem. Chem. Phys., 2014, 16, 10830-10836.
109 M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee and S. H. Hong, Appl. Phys. Lett., 2008, 93, 263103.
110 C. Pang, B. Yan, L. Liao, B. Liu, Z. Zheng, T. Wu, H. Sun and T. Yu, Nanotechnology, 2010, 21, 465706.
111 Y. C. Liang and S. L. Liu, Acta Mater., 2015, 88, 245-251.
112 Y. C. Liang, S. L. Liu and H. Y. Hsia, Nanoscale Res. Lett., 2015, 10, 350.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top