|
[1] Alawneh, A.S., 2005, Modelling Load-displacement Response of Driven Piles in Cohesionless Soils under Tensile Loading, Computers and Geotechnics, VOL.32, pp.578-586. [2] Amira, M., Y. Yokoyama, S. Imaizumi, 2008, Friction Capacity of Axially Loaded Model Pile in Sand, Soils and Foundations, VOL.35, No.1, pp.75-82. [3] Biot, M.A., 1941a, General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, VOL.12, No.2, pp.155-164. [4] Bjerrum, L., 1963, Allowable Settlement of Structure, Proceedings of European Conference on Soil Mechanics and Foundation Engineering, VOL.2, pp.35-137. [5] Bjerrum, L., 1967, Engineering Geology of Norweign Normally Consolidated Marine Clays as Related to Settlements of Buildings, Geotechnique, VOL.17, No.2, pp.81-118. [6] Boussinesq, J., 1885, Application des Potentiels a L’Etude de L’Equilibre et due Mouvement des Solides Elastiques, Gauthier-Villars, Paris. [7] Brown, M.J., Hyde, A.F.L., Anderson, W.F. (2006), Analysis of a Rapid Load Test on an Instrumented Bored Piles in Clay, Geotechnique, VOL. 56, No. 9, pp. 627-638. [8] Bruun. P., Gunbak. A.R., 1976, New Design Principles for Rubble Mound Structures, Coastal Engineering, pp.2429-2473. [9] Chattopadhyay, B.C., Pise, P.J., 1986, Uplift Cpacity of Piles in Sand, Journal of Geotechnical Engineering, VOL.112, No.9, pp.888-904. [10] Chen, T.C., 2004, Mechanical Behaviour of Soft Marine Silts under Nearshore Structure, M.S. Thesis, National Taiwan Ocean University. [11] Chien, H.H., 2015, A Case Study of Diaphragm Wall, Cross Wall, Butress Wall and Pile Wall Units Planning, M.S. Thesis, Natioal Taipei University of Technology. [12] Comodromos, E.M., Papadopoulou, M.C., Rentzeperis, I.K., 2009, Pile Foundation Analysis and Design Using Experimental Data and 3-D Numerical Analysis, Computers and Geotechnics, VOL.36, pp.819-836. [13] Das, B.M., Seeley, G.R., 1975, Uplift Capacity of Buried Model Piles in Sand, Journal of the Geothecnical Engineering Division, VOL.101, No. 10, pp.1091-1094. [14] Das, B.M., 1986, Uplift Capacity of Piles and Pile Groups in Sand, Oceans’86, IEEE. [15] De Rouck, J., Van Damme, L., 1996, Overall Slope Stability Analysis of Rubble Mound Breakwaters, Coastal Engineering, pp.1603-1616. [16] Deschamps, R., Richards, T.D. Jr., 2005, Installation Measurement and Interpretation of Sister Bar Strain Gauges in Micropiles, Proceedings of the GEO Construction QA/QC Technical Conference, Dallas, Texas, pp. 167-178. [17] Einav, I., Klar, A., 2003, An Approach for Nonlinear Contact Surface Analysis and Application to Pile Installation, BGA International Conference on Foundations:Innovations, Observations, Design and Practice. [18] Engin, H.K., Septanika, E.G., Brinkgreve, R.B.J., 2007, Improved Embedded Beam Elements for the Modelling of Piles, In: G.N. Pande & S. Pietruszczak (eds.), Int. Symp. on Numerical Models in Geomechanics-NUMOG X, pp.475-480. London, Taylor & Francis group. [19] Engin, H.K., Septanika, E.G., Brinkgreve, R.B.J., Bonnier, P.G., 2009, Modelling Piled Foundation by Means of Embedded Piles, 2nd International Workshop on Geotechnics of Soft Soils - Focus on Ground Improvement, 3-5 September 2008, University of Strathclyde, Glasgow, Scotland. [20] Faizi, K., Kalatehjari, R., Nazir, R., Rashid, A.S.A., 2015, Determination of Pile Failure Mechanism under Pullout Test in Loose Sand, Journal of Central South University, VOL.22, PP.1490-1501. [21] Fellenius, B.H., 1989, Tangent Modulus of Piles Determined from Strain Data, Foundation Engineering Current Principles and Practice, GSP 22, ASCE, VOL. 1, pp. 500-510. [22] Fellenius, B.H., 2001, From Strain Measurements to Load in an Instrumented Pile, Geotechnical News Magazine, VOL. 19, No. 1, pp 35-38. [23] Fellenius, B.H., Kim, S.H., Chung, S. G., 2009, Long-term Monitoring of Strain in Instrumented Piles, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, VOL. 135, No. 11, pp.1583-1595. [24] Fellenius, B.H., 2012, Discussion of Critical Assessment of Pile Modulus Determination Methods, Canadian Geotechnical Journal, VOL. 49, pp.614-621. [25] Fellenius, B.H., 2016, Embankment Settlement Prediction, Embankment and Footing Prediction Symposium, Austrlian Research Council of Excellence. [26] Fleming, W.G.K., 1992, A New Method for Single Pile Settlement Prediction and Analysis, Geotechnique, VOL. 42, No. 3, pp. 411-425. [27] Griffiths, D.V., 1982, Computation of Bearing Capacity Factors using Finite Elements, Geotechnique, VOL.32, No.3, pp.195-202. [28] Guo, D.J., Tham, L.G., Cheung, Y.K., 1987, Infinite Layer for the Analysis of a Single Pile, Computers and Geotechnics, VOL.3, pp.229-249. [29] Hansen, J.B., Gibson, R.E., 1949, Undrained Shear Strengths of Anisotropically Consolidated Clays, Geotechnique, VOL.1, No.3, pp.189-204. [30] Hansen, J.B., 1952, A General Plasticity Theory for Clay, Geotechnique, VOL.3. [31] Hansen, J.B., 1970, A Revised and Extended Formula for Bearing Capacity, Bulletin, No.28, Geoteknisk institut, Denmark, pp.21. [32] He, L., Bie, S., Qi, Y., 2007, Study of Slipping in the Rubble-bedding of Gravity Quays, Chinese Journal of Geotechnical Engineering, VOL.29, No.1, pp.66-70. [33] Helgason, E., Burcharth, H.F., Beck, J.B., 2000, Stability of Rubble Mound Breakwaters using High Density Rock, Coastal Enginering, pp.1935-1945. [34] Hill. R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London, U.K. [35] Holko, M., Stacho, J., 2014, Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile, Slovak Journal of Civil Engineering, VOL.22, No.4, pp.1-10. [36] Hsu, C.L., 2006, A Study on Bearing Behavior of Cast-in-Place Piles and Its Application to Design Code, M.S. Thesis, National Taiwan University of Technology. [37] Jalali, M.M., Golmaei, S.H., Jalali, M.R., Borthwick, A., Ahmadi, M.K.Z., Moradi, R., Using Finite Element method for Pile-Soil Interface, Journal of Civil Engineering and Construction Technology, VOL.3, pp.256-272 [38] Jeng, B.W., 2008, Analysis of Characteristic of Soil-Cement Mixed Wall and Excavation-Induced Deformation Using PLAXIS, M.S. Thesis, National Taiwan University of Technology. [39] Jiang, X., Qiu, Y.J., Wei, Y.X., 2007, Engineering Behaviour of Subgrade Embankments on Sloped Weak Ground Based on Strength Reduction FEM, Chinese Journal of Geotechnical Engineering, VOL.29, No.4, pp.622-627. [40] O’Kelly, B.C., Brinkgreve, R.B.J., Sivakumar, V., 2014, Pullout Resistance of Granular Anchors in Clay for Undrained Condition, Soils and Foundations, VOL. 54, No. 6, pp. 1145-1158. [41] Kulhawy, F.H., 1981, Analysis of Drilled Shaft Foundations in Uplift:A Summary Report, Geotechnical Engineering Report, 81-3, Cornell University. [42] Kulhawy, F.H., P.W. Mayne, 1990, Manual on Estimating Soil Properties for Foundation Design, Cornell University, Ithaca, New York. [43] Ladd, C.C., 1991, Stability Evaluation During Staged Construction, Journal of Geotechnical Engineering, VOL.117, pp.540-615. [44] Lam, C., Jefferis, S.A., 2011, Critical Assessment of Pile Modulus Determination Methods, Canadian Geotechnical Journal, VOL. 48, No. 10, pp. 1433-1448. [45] Lin, S.S., Wang, K.J., Hsieh, H.S., Chang, Y.H., Huang, C.S., 2007, Field Testing of Axially Loaded Drilled Shafts in Clay/Gravel Layer, Journal of GeoEngineering, VOL. 2, No. 3, pp. 123-128. [46] Lin, S.S., Liao, J.C., Wang, K.J., Lin, Y.K., 2010, Load Capacity of Drilled Shafts Socketed in Andesite Rock, The Art of Foundation Engineering Practice, pp.359-370. [47] Lin, S.S., Liao, J.C., Balasubramaniam, A.S., Lin, Y.K., 2017, Comparison Between the Tensile Behaviours of Rock-Socketed Barrette and Drilled Shaft, International Conference on Soil Mechanics and Geotechnical Engineering. [48] Lin, S.S., Chen, T.H., Kao, Y.H., 2017, Effect of Concrete Modulus on Interpretation of Axially Loading Test of Drilled Shafts, The 17th Conference on Current Researches In Geotechnical Engineering In Taiwan. [49] Low, B.K., 1989, Stability Analysis of Embankments on Soft Ground, Journal of Geotechnical Engineering, VOL.115, pp.211-227. [50] Meyerholf, G.G., Adams, J.I., 1968, The Ultimate Uplift Capacity of Foundation, Canadian Geotechnical Journal, VOL.5, No.4, pp.225-244. [51] Naveen, B.P., 2011, Numerical Simulation of Vertically Loaded Piles, Indian Geotechnical Conference, No.N-118. [52] Nicola,A.D., Randolph, M.F., 1993, Tensile and Compressive Shaft Capacity of Pile in Sand, Journal of Geotechnical Engineering, VOL.119, No.12, pp.1952-1973. [53] Omer, J.R., Delpak, R., Robinson, R.B., 2002, Instrumented Load Tests in Mudstone: Pile Capacity and Settlement Prediction, Canadian Geotechnical Journal, VOL. 39, pp. 1254-1272. [54] O’Neill, M.W., Reese, L.C., 1999, Drilled Shafts: Construction Procedures and Design Methods, FHWA-IF-99-025, Federal Highway Administration, US Department of Transportation, USA. [55] PLAXIS 3D, 2016, Material Models Manual, PLAXIS bv, The Netherlands. [56] Poulos, H.G., Cyclic Axial Loading Analysis of Piles in Sand, Journal of Geotechnical Engineering, VOL.117, No.9, pp.112-153. [57] Potyondy, J.G., 1961, Skin Friction Between Various Soils and Construction Materials, Geotechnique, VOL.11, pp.339-353. [58] Prantl, L., 1920, Über die Harte plastischer Körper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp.74-85. [59] Ribeiro, J.G.S.B., 2013, Behaviour of Single Piles under Axial Loading:Analysis of Settlement and Load Distribution, M.S. Thesis, Technical University of Lisbon. [60] Rinne. N.F., 1989, Evaluation of Interface Friction Between Cohesionless Soil and Common Construction Materials, M.A.S. Thesis, University of British Columbia. [61] Sheil, B.B., McCabe, B.A., 2012, Predictions of Friction Pile Group Response Using Embedded Piles in PLAXIS, International Conference on New Developments in Soil Mechanics and Geotechnical Engineering. [62] Sheil, B.B., McCabe, B.A., 2015, Numerical Modelling of Pile Foundation Angular Distortion, Soils and Foundations, VOL.55, No.3, pp. 614-625. [63] Smith, A.W.S., Gordon, A.D., 1983, Large Breakwater Toe Failures, Journal of Waterway, Port, Coastal, and Ocean Engineering, VOL.109, No.2, pp.253-255. [64] Sulisz, W., 1992, Numerical Modelling of the Stability of Rubble Bases, Coastal Engineering, pp.1799-1809. [65] Sun, X.P., Sun, B.S., Yin, J.L., Zhang, H.Q., Cui, Y.Q., 2015, Analysis on Influence of Soft Clay Strength Change to Stability of Breakwater, Journal of Waterway and Harbour, VOL.36, No.6, pp.567-573. [66] Terzaghi, K., 1943, Theoretical Soil Mechanics, John Wiley & Sons, Inc. [67] Thompson III, W.R., 1994, Axial Capacity of Drilled Shafts Socketed into Soft Rock, M.S. Thesis, Auburn University. [68] USACE, 1984, Shore Protection Manual:Volume I and II. [69] Van Baars. S., Van Niekerk, W.J., 1999, Numerical Modelling of Tension Piles, Beyond 2000 in Computational Geotechnics, Balkema, pp.237-246. [70] Van Langen, H., Vermeer, P. A., 1991, Interface Elements for Singular Plasticity Points, International Journal for Numerical and Analytical Methods in Geomechanics, VOL.15, pp.301-315. [71] Verhaeghe, H., Damme, L.V., Goemaere, J., 2010, Construction of Two New Breakwaters at Ostend Leading to an Improved Harbour Access, Coastal Engineering. [72] Verhaeghe, H., Vos, L.D., Boone, E., Goemaere, J., 2014, Using Field Data to Improve the Settlement Prediction Model of a Breakwater on Soft Soil, Journal of Waterway, Port, Coastal, and Ocean Engineering, VOL.140, No.2, pp.173-187. [73] Vesic, A.S., 1963, Bearing Capacity of Deep Foundations in Sand, Highway Research Board Record, No.39, pp.112-153. [74] Wang, K.J., 2007, Skin Friction of Revers-Circulation Drilled Shafts in Sinyi Development Zone of Taipei Basin, M.S. Thesis, National Taiwan Ocean University. [75] Weng, H.P., 2006, The Shear Stress and Mound Settlement of Nearshore Soft Marine Silts, M.S. Thesis, National Taiwan Ocean University. [76] Xu, H.Y., Chen, L.Z., Deng, J.L., 2014, Uplift Tests of Jet Mixing Anchor Pile, Soils and Foundations, VOL.54, No.2, pp.167-175. [77] Yang, C.Y., 2015, A Study on Side Friction of Drilled Pile in Cobble Layers, Doctoral Dissertation, National Chung Hsing University. [78] Zhi, H., Bie, S., Ren, Z., 2009, On Sliding Failure in Rubble Bed of Gravity Wharf, Port and Waterway Engineering, No.1, Serial No. 423, pp.50-56. [79] 中國土木水利工程學會,1996,港灣及海域工程,科技圖書股份有限公司。 [80] 內政部,2001,建築物基礎構造設計規範。 [81] 日本港灣協會,1979,港灣構造設計基準。 [82] 台灣世曦工程顧問股份有限公司,2015,東莒猛澳碼頭區外廓防波堤工程補充地質鑽探工作報告書(修正一版)。 [83] 台灣世曦工程顧問股份有限公司,2016,「104年馬祖港埠白沙碼頭區」委託設計技術服務案鑽探試驗成果報告書(初稿)。 [84] 交通部,1996,港灣構造物設計基準-防波堤設計基準及說明。 [85] 國立中央大學,財團法人地工技術研究發展基金會,2007,馬祖港福澳碼頭區擴建工程因應對策之評估、分析研究計畫初步報告(初稿)。 [86] 華邦工程顧問有限公司,2014,連江縣北竿白砂碼頭區浮動碼頭工程鑽探報告書。 [87] 塏固工程有限公司,2006,東森關渡園區補充地質鑽探。 [88] 福建省連江縣港務處,2013,馬祖國內商港區域劃定說明書(核定版)。 [89] 趙少偉,王丙興,郭蓉,2008,PLAXIS在高速公路軟基變形研究中的應用,路基工程,第139期,第20-21頁。
|