跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高宇顥
研究生(外文):Kao, Yu-Hao
論文名稱:PLAXIS於海堤及鑽掘樁拔出應用分析
論文名稱(外文):Application of PLAXIS in Breakwater and Pullout of Drilled Shaft Analysis
指導教授:林三賢林三賢引用關係
指導教授(外文):Lin, San-Shyan
口試委員:林宏達廖振程
口試委員(外文):Lin, Horn-DaLiao, Jen-Cheng
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:200
中文關鍵詞:PLAXIS海堤鑽掘樁拉拔
外文關鍵詞:PLAXISBreakwaterDrilled ShaftPullout
相關次數:
  • 被引用被引用:1
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
進行海岸區域工程時,因海床之軟弱特性,於結構物構築時,常遭遇沉陷量超出估算之情況;又現行之基樁拉拔試驗使用之經驗方法對於推估鑽掘樁與矩形樁之內部軸力有其不足之處。
本研究以有限元素分析程式 PLAXIS 分別對二者進行分析,於海堤部分建立一梯型斷面海堤模型進行分層構築之沉陷分析,經由與海堤之實際觀測沉陷量作比對,以驗證模型之適用性。再以不同地區之海床土壤參數進行探討,以施工階段間隔作為變數,觀察階段間隔之天數變化對沉陷量之影響。
於基樁部分,本研究分別對鑽掘樁與矩形樁建置模型,於樁頂施加與試驗相同之拉拔載重,驗證數値程式之樁頭位移與試驗之觀測結果。觀察經由割線及切線模數轉換所求得之樁身軸力與以數値程式所得之結果之差異,並進一步探討以數値程式所求得之樁身摩擦應力與位移之關係、樁周土壤位移與應變變化及樁周土壤之應力分析,藉分析結果了解模擬之現地樁土力學行為。
When constructing structures on nearshore area, due to the weak properties of the sea bed, oversettlement is a frequently facing problem; furthermore, the experimental methods using for evaluating changes of pile load versus depth from pile pullout test is inadequate. Numerical analysis is used to simulate the field situation and the mechanical behaviour of its process in this thesis.
In this thesis, the two part of study is analyzed by FEM numerical program PLAXIS. A trapezoid breakwater is simplified modeling to analysis the settlement of layered constrution. By comparing with results of the observed settlement to verify the suitable of these analytical procedures. The verified analytical procedures were then used to further investigate the effect of different soil parameters of two sites. The change of period of phases is to observe the effect on settlement.
To simulate the actual pile system, four different loads were selected from pile load test to verified the model by comparing the displacement of pile head versus load. Observation the differences between numerical results and pile load after secant and tangent modulus conversion versus depth is discussed respectively in this thesis. The relationship of shaft unit frictional resistance versus displacement and the displacement and principal strain and stress is also shown in Chapter 5 to investigate the pile-load system.
摘要 I
Abstract II
目次 III
圖次 V
表次 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 1
1.3 研究內容 1
第二章 文獻回顧 3
2.1 土壤之壓密理論 3
2.2 基礎破壞型式 4
2.3 結構物應力分布 4
2.4 基樁拉拔之行為與機制 5
2.4.1 受力機制 5
2.4.2 拉拔承載力理論 7
2.4.3 基樁與土壤之界面摩擦行為 8
2.5 基樁彈性模數 10
2.5.1 理論值 10
2.5.2 割線模數法 11
2.5.3 切線模數法 11
2.6 摩擦應力與位移曲線法 12
第三章 有限元素數值分析程式 15
3.1 有限元素數值分析程式 PLAXIS 簡介 15
3.2 分析運算模式 15
3.3 分析土壤模式 16
3.3.1 土壤彈塑性模式 17
3.3.2 莫爾-庫侖模型 17
3.3.3 莫爾-庫倫模型基本參數 19
3.4 界面 20
3.4.1 界面強度 20
3.4.2 實際界面厚度 21
3.5 分析模式建置 21
3.5.1 海堤案例 21
3.5.1.1 幾何邊界條件 22
3.5.1.2 土層材料參數 22
3.5.1.3 海堤結構材料參數 22
3.5.1.4 模擬分析流程 24
3.5.2 鑽掘樁案例 25
3.5.2.1 幾何邊界條件 25
3.5.2.2 土層材料參數 25
3.5.2.3 樁結構材料參數 26
3.5.2.4 模擬分析流程 28
第四章 海堤案例分析 29
4.1 案例說明 29
4.1.1 福澳案例土層概述 29
4.1.2 白砂案例土層概述 33
4.1.3 猛澳案例土層概述 35
4.1.4 海堤結構參數概述 37
4.2 福澳案例分析結果與討論 38
4.3 白砂案例分析結果與討論 73
4.4 猛澳案例分析結果與討論 107
第五章 鑽掘樁案例分析 141
5.1 案例說明 141
5.1.1 案例土層條件概述 142
5.1.2 鑽掘樁概述 146
5.2 分析結果與討論 147
5.2.1 樁頭位移分析結果 147
5.2.2 樁身軸力分析 148
5.2.3 樁身摩擦應力與位移曲線分析結果 151
5.2.4 樁周土壤位移與應變分析結果 155
5.2.5 樁周土壤應力分析結果 174
第六章 結論與建議 193
6.1 結論 193
6.2 建議 194
參考文獻 195
[1] Alawneh, A.S., 2005, Modelling Load-displacement Response of Driven Piles in Cohesionless Soils under Tensile Loading, Computers and Geotechnics, VOL.32, pp.578-586.
[2] Amira, M., Y. Yokoyama, S. Imaizumi, 2008, Friction Capacity of Axially Loaded Model Pile in Sand, Soils and Foundations, VOL.35, No.1, pp.75-82.
[3] Biot, M.A., 1941a, General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, VOL.12, No.2, pp.155-164.
[4] Bjerrum, L., 1963, Allowable Settlement of Structure, Proceedings of European Conference on Soil Mechanics and Foundation Engineering, VOL.2, pp.35-137.
[5] Bjerrum, L., 1967, Engineering Geology of Norweign Normally Consolidated Marine Clays as Related to Settlements of Buildings, Geotechnique, VOL.17, No.2, pp.81-118.
[6] Boussinesq, J., 1885, Application des Potentiels a L’Etude de L’Equilibre et due Mouvement des Solides Elastiques, Gauthier-Villars, Paris.
[7] Brown, M.J., Hyde, A.F.L., Anderson, W.F. (2006), Analysis of a Rapid Load Test on an Instrumented Bored Piles in Clay, Geotechnique, VOL. 56, No. 9, pp. 627-638.
[8] Bruun. P., Gunbak. A.R., 1976, New Design Principles for Rubble Mound Structures, Coastal Engineering, pp.2429-2473.
[9] Chattopadhyay, B.C., Pise, P.J., 1986, Uplift Cpacity of Piles in Sand, Journal of Geotechnical Engineering, VOL.112, No.9, pp.888-904.
[10] Chen, T.C., 2004, Mechanical Behaviour of Soft Marine Silts under Nearshore Structure, M.S. Thesis, National Taiwan Ocean University.
[11] Chien, H.H., 2015, A Case Study of Diaphragm Wall, Cross Wall, Butress Wall and Pile Wall Units Planning, M.S. Thesis, Natioal Taipei University of Technology.
[12] Comodromos, E.M., Papadopoulou, M.C., Rentzeperis, I.K., 2009, Pile Foundation Analysis and Design Using Experimental Data and 3-D Numerical Analysis, Computers and Geotechnics, VOL.36, pp.819-836.
[13] Das, B.M., Seeley, G.R., 1975, Uplift Capacity of Buried Model Piles in Sand, Journal of the Geothecnical Engineering Division, VOL.101, No. 10, pp.1091-1094.
[14] Das, B.M., 1986, Uplift Capacity of Piles and Pile Groups in Sand, Oceans’86, IEEE.
[15] De Rouck, J., Van Damme, L., 1996, Overall Slope Stability Analysis of Rubble Mound Breakwaters, Coastal Engineering, pp.1603-1616.
[16] Deschamps, R., Richards, T.D. Jr., 2005, Installation Measurement and Interpretation of Sister Bar Strain Gauges in Micropiles, Proceedings of the GEO Construction QA/QC Technical Conference, Dallas, Texas, pp. 167-178.
[17] Einav, I., Klar, A., 2003, An Approach for Nonlinear Contact Surface Analysis and Application to Pile Installation, BGA International Conference on Foundations:Innovations, Observations, Design and Practice.
[18] Engin, H.K., Septanika, E.G., Brinkgreve, R.B.J., 2007, Improved Embedded Beam Elements for the Modelling of Piles, In: G.N. Pande & S. Pietruszczak (eds.), Int. Symp. on Numerical Models in Geomechanics-NUMOG X, pp.475-480. London, Taylor & Francis group.
[19] Engin, H.K., Septanika, E.G., Brinkgreve, R.B.J., Bonnier, P.G., 2009, Modelling Piled Foundation by Means of Embedded Piles, 2nd International Workshop on Geotechnics of Soft Soils - Focus on Ground Improvement, 3-5 September 2008, University of Strathclyde, Glasgow, Scotland.
[20] Faizi, K., Kalatehjari, R., Nazir, R., Rashid, A.S.A., 2015, Determination of Pile Failure Mechanism under Pullout Test in Loose Sand, Journal of Central South University, VOL.22, PP.1490-1501.
[21] Fellenius, B.H., 1989, Tangent Modulus of Piles Determined from Strain Data, Foundation Engineering Current Principles and Practice, GSP 22, ASCE, VOL. 1, pp. 500-510.
[22] Fellenius, B.H., 2001, From Strain Measurements to Load in an Instrumented Pile, Geotechnical News Magazine, VOL. 19, No. 1, pp 35-38.
[23] Fellenius, B.H., Kim, S.H., Chung, S. G., 2009, Long-term Monitoring of Strain in Instrumented Piles, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, VOL. 135, No. 11, pp.1583-1595.
[24] Fellenius, B.H., 2012, Discussion of Critical Assessment of Pile Modulus Determination Methods, Canadian Geotechnical Journal, VOL. 49, pp.614-621.
[25] Fellenius, B.H., 2016, Embankment Settlement Prediction, Embankment and Footing Prediction Symposium, Austrlian Research Council of Excellence.
[26] Fleming, W.G.K., 1992, A New Method for Single Pile Settlement Prediction and Analysis, Geotechnique, VOL. 42, No. 3, pp. 411-425.
[27] Griffiths, D.V., 1982, Computation of Bearing Capacity Factors using Finite Elements, Geotechnique, VOL.32, No.3, pp.195-202.
[28] Guo, D.J., Tham, L.G., Cheung, Y.K., 1987, Infinite Layer for the Analysis of a Single Pile, Computers and Geotechnics, VOL.3, pp.229-249.
[29] Hansen, J.B., Gibson, R.E., 1949, Undrained Shear Strengths of Anisotropically Consolidated Clays, Geotechnique, VOL.1, No.3, pp.189-204.
[30] Hansen, J.B., 1952, A General Plasticity Theory for Clay, Geotechnique, VOL.3.
[31] Hansen, J.B., 1970, A Revised and Extended Formula for Bearing Capacity, Bulletin, No.28, Geoteknisk institut, Denmark, pp.21.
[32] He, L., Bie, S., Qi, Y., 2007, Study of Slipping in the Rubble-bedding of Gravity Quays, Chinese Journal of Geotechnical Engineering, VOL.29, No.1, pp.66-70.
[33] Helgason, E., Burcharth, H.F., Beck, J.B., 2000, Stability of Rubble Mound Breakwaters using High Density Rock, Coastal Enginering, pp.1935-1945.
[34] Hill. R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London, U.K.
[35] Holko, M., Stacho, J., 2014, Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile, Slovak Journal of Civil Engineering, VOL.22, No.4, pp.1-10.
[36] Hsu, C.L., 2006, A Study on Bearing Behavior of Cast-in-Place Piles and Its Application to Design Code, M.S. Thesis, National Taiwan University of Technology.
[37] Jalali, M.M., Golmaei, S.H., Jalali, M.R., Borthwick, A., Ahmadi, M.K.Z., Moradi, R., Using Finite Element method for Pile-Soil Interface, Journal of Civil Engineering and Construction Technology, VOL.3, pp.256-272
[38] Jeng, B.W., 2008, Analysis of Characteristic of Soil-Cement Mixed Wall and Excavation-Induced Deformation Using PLAXIS, M.S. Thesis, National Taiwan University of Technology.
[39] Jiang, X., Qiu, Y.J., Wei, Y.X., 2007, Engineering Behaviour of Subgrade Embankments on Sloped Weak Ground Based on Strength Reduction FEM, Chinese Journal of Geotechnical Engineering, VOL.29, No.4, pp.622-627.
[40] O’Kelly, B.C., Brinkgreve, R.B.J., Sivakumar, V., 2014, Pullout Resistance of Granular Anchors in Clay for Undrained Condition, Soils and Foundations, VOL. 54, No. 6, pp. 1145-1158.
[41] Kulhawy, F.H., 1981, Analysis of Drilled Shaft Foundations in Uplift:A Summary Report, Geotechnical Engineering Report, 81-3, Cornell University.
[42] Kulhawy, F.H., P.W. Mayne, 1990, Manual on Estimating Soil Properties for Foundation Design, Cornell University, Ithaca, New York.
[43] Ladd, C.C., 1991, Stability Evaluation During Staged Construction, Journal of Geotechnical Engineering, VOL.117, pp.540-615.
[44] Lam, C., Jefferis, S.A., 2011, Critical Assessment of Pile Modulus Determination Methods, Canadian Geotechnical Journal, VOL. 48, No. 10, pp. 1433-1448.
[45] Lin, S.S., Wang, K.J., Hsieh, H.S., Chang, Y.H., Huang, C.S., 2007, Field Testing of Axially Loaded Drilled Shafts in Clay/Gravel Layer, Journal of GeoEngineering, VOL. 2, No. 3, pp. 123-128.
[46] Lin, S.S., Liao, J.C., Wang, K.J., Lin, Y.K., 2010, Load Capacity of Drilled Shafts Socketed in Andesite Rock, The Art of Foundation Engineering Practice, pp.359-370.
[47] Lin, S.S., Liao, J.C., Balasubramaniam, A.S., Lin, Y.K., 2017, Comparison Between the Tensile Behaviours of Rock-Socketed Barrette and Drilled Shaft, International Conference on Soil Mechanics and Geotechnical Engineering.
[48] Lin, S.S., Chen, T.H., Kao, Y.H., 2017, Effect of Concrete Modulus on Interpretation of Axially Loading Test of Drilled Shafts, The 17th Conference on Current Researches In Geotechnical Engineering In Taiwan.
[49] Low, B.K., 1989, Stability Analysis of Embankments on Soft Ground, Journal of Geotechnical Engineering, VOL.115, pp.211-227.
[50] Meyerholf, G.G., Adams, J.I., 1968, The Ultimate Uplift Capacity of Foundation, Canadian Geotechnical Journal, VOL.5, No.4, pp.225-244.
[51] Naveen, B.P., 2011, Numerical Simulation of Vertically Loaded Piles, Indian Geotechnical Conference, No.N-118.
[52] Nicola,A.D., Randolph, M.F., 1993, Tensile and Compressive Shaft Capacity of Pile in Sand, Journal of Geotechnical Engineering, VOL.119, No.12, pp.1952-1973.
[53] Omer, J.R., Delpak, R., Robinson, R.B., 2002, Instrumented Load Tests in Mudstone: Pile Capacity and Settlement Prediction, Canadian Geotechnical Journal, VOL. 39, pp. 1254-1272.
[54] O’Neill, M.W., Reese, L.C., 1999, Drilled Shafts: Construction Procedures and Design Methods, FHWA-IF-99-025, Federal Highway Administration, US Department of Transportation, USA.
[55] PLAXIS 3D, 2016, Material Models Manual, PLAXIS bv, The Netherlands.
[56] Poulos, H.G., Cyclic Axial Loading Analysis of Piles in Sand, Journal of Geotechnical Engineering, VOL.117, No.9, pp.112-153.
[57] Potyondy, J.G., 1961, Skin Friction Between Various Soils and Construction Materials, Geotechnique, VOL.11, pp.339-353.
[58] Prantl, L., 1920, Über die Harte plastischer Körper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp.74-85.
[59] Ribeiro, J.G.S.B., 2013, Behaviour of Single Piles under Axial Loading:Analysis of Settlement and Load Distribution, M.S. Thesis, Technical University of Lisbon.
[60] Rinne. N.F., 1989, Evaluation of Interface Friction Between Cohesionless Soil and Common Construction Materials, M.A.S. Thesis, University of British Columbia.
[61] Sheil, B.B., McCabe, B.A., 2012, Predictions of Friction Pile Group Response Using Embedded Piles in PLAXIS, International Conference on New Developments in Soil Mechanics and Geotechnical Engineering.
[62] Sheil, B.B., McCabe, B.A., 2015, Numerical Modelling of Pile Foundation Angular Distortion, Soils and Foundations, VOL.55, No.3, pp. 614-625.
[63] Smith, A.W.S., Gordon, A.D., 1983, Large Breakwater Toe Failures, Journal of Waterway, Port, Coastal, and Ocean Engineering, VOL.109, No.2, pp.253-255.
[64] Sulisz, W., 1992, Numerical Modelling of the Stability of Rubble Bases, Coastal Engineering, pp.1799-1809.
[65] Sun, X.P., Sun, B.S., Yin, J.L., Zhang, H.Q., Cui, Y.Q., 2015, Analysis on Influence of Soft Clay Strength Change to Stability of Breakwater, Journal of Waterway and Harbour, VOL.36, No.6, pp.567-573.
[66] Terzaghi, K., 1943, Theoretical Soil Mechanics, John Wiley & Sons, Inc.
[67] Thompson III, W.R., 1994, Axial Capacity of Drilled Shafts Socketed into Soft Rock, M.S. Thesis, Auburn University.
[68] USACE, 1984, Shore Protection Manual:Volume I and II.
[69] Van Baars. S., Van Niekerk, W.J., 1999, Numerical Modelling of Tension Piles, Beyond 2000 in Computational Geotechnics, Balkema, pp.237-246.
[70] Van Langen, H., Vermeer, P. A., 1991, Interface Elements for Singular Plasticity Points, International Journal for Numerical and Analytical Methods in Geomechanics, VOL.15, pp.301-315.
[71] Verhaeghe, H., Damme, L.V., Goemaere, J., 2010, Construction of Two New Breakwaters at Ostend Leading to an Improved Harbour Access, Coastal Engineering.
[72] Verhaeghe, H., Vos, L.D., Boone, E., Goemaere, J., 2014, Using Field Data to Improve the Settlement Prediction Model of a Breakwater on Soft Soil, Journal of Waterway, Port, Coastal, and Ocean Engineering, VOL.140, No.2, pp.173-187.
[73] Vesic, A.S., 1963, Bearing Capacity of Deep Foundations in Sand, Highway Research Board Record, No.39, pp.112-153.
[74] Wang, K.J., 2007, Skin Friction of Revers-Circulation Drilled Shafts in Sinyi Development Zone of Taipei Basin, M.S. Thesis, National Taiwan Ocean University.
[75] Weng, H.P., 2006, The Shear Stress and Mound Settlement of Nearshore Soft Marine Silts, M.S. Thesis, National Taiwan Ocean University.
[76] Xu, H.Y., Chen, L.Z., Deng, J.L., 2014, Uplift Tests of Jet Mixing Anchor Pile, Soils and Foundations, VOL.54, No.2, pp.167-175.
[77] Yang, C.Y., 2015, A Study on Side Friction of Drilled Pile in Cobble Layers, Doctoral Dissertation, National Chung Hsing University.
[78] Zhi, H., Bie, S., Ren, Z., 2009, On Sliding Failure in Rubble Bed of Gravity Wharf, Port and Waterway Engineering, No.1, Serial No. 423, pp.50-56.
[79] 中國土木水利工程學會,1996,港灣及海域工程,科技圖書股份有限公司。
[80] 內政部,2001,建築物基礎構造設計規範。
[81] 日本港灣協會,1979,港灣構造設計基準。
[82] 台灣世曦工程顧問股份有限公司,2015,東莒猛澳碼頭區外廓防波堤工程補充地質鑽探工作報告書(修正一版)。
[83] 台灣世曦工程顧問股份有限公司,2016,「104年馬祖港埠白沙碼頭區」委託設計技術服務案鑽探試驗成果報告書(初稿)。
[84] 交通部,1996,港灣構造物設計基準-防波堤設計基準及說明。
[85] 國立中央大學,財團法人地工技術研究發展基金會,2007,馬祖港福澳碼頭區擴建工程因應對策之評估、分析研究計畫初步報告(初稿)。
[86] 華邦工程顧問有限公司,2014,連江縣北竿白砂碼頭區浮動碼頭工程鑽探報告書。
[87] 塏固工程有限公司,2006,東森關渡園區補充地質鑽探。
[88] 福建省連江縣港務處,2013,馬祖國內商港區域劃定說明書(核定版)。
[89] 趙少偉,王丙興,郭蓉,2008,PLAXIS在高速公路軟基變形研究中的應用,路基工程,第139期,第20-21頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top