王美瓔,2005,基質次結合部位殘基突變後對於麥芽糖寡苷海藻糖水解酶之活性與基質選擇性的影響,國立臺灣海洋大學食品科學系碩士學位論文,基隆。石東原,2004,活性部位殘基突變後對於海藻糖生成酶之活性與基質選擇性的影響,國立臺灣海洋大學食品科學系碩士學位論文,基隆。余文青,2008,利用 Sulfolobus solfataricus ATCC 35092 之原生型與突變型麥芽寡糖苷海藻糖生成酶及麥芽寡糖苷海藻糖水解酶由澱粉生產海藻糖之研究,國立臺灣海洋大學食品科學系碩士學位論文,基隆。汪毓屏,2011,增加與減少基質結合部位殘基與基質間氫鍵對於麥芽寡糖苷海藻糖水解酶之活性與基質選擇性的影響,國立臺灣海洋大學食品科學系碩士學位論文,基隆。黃幸光,2002,嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討,國立臺灣海洋大學食品科學系碩士學位論文,基隆。黃鈺婷,2016,Sulfolobus acidocaldarius 來源之麥芽寡糖苷海藻糖生成酶突變與固定化探討,國立臺灣海洋大學食品科學系碩士學位論文,基隆。潘勁行,2004,活性部位苯丙胺酸殘基突變後對於海藻糖苷糊精生成酶之轉糖基與水解作用的影響,國立臺灣海洋大學食品科學系碩士學位論文,隆。劉英嬋,2014,以枯草桿菌表現重組熱穩定性海藻糖生成相關酵素並由澱粉生產海藻糖,國立臺灣海洋大學食品科學系碩士學位論文,基隆。蘇子涵,2015,熱穩定重組海藻糖生成相關酵素的固定化之研究,國立臺灣海洋大學食品科學系碩士學位論文,基隆。Aboulaich N, Chung WK, Thompson JH, Larkin C, Robbins D, & Zhu M. (2014). A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnology progress, 30(5), 1114-1124.
Cejkova J, Cejka C, & Luyckx J. (2012). Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histology and Histopathology, 27(8), 1029-1040.
Chi Z, Wang JM, Chi ZM, & Ye F. (2010). Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. Journal of Industrial Microbiology and Biotechnology, 37(1), 19-25.
de Pascale D, Sasso MP, Di Lernia I, Di Lazzaro A, Furia A, Farina MC, Rossi M, & De Rosa M. (2001). Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. Journal of Molecular Catalysis B: Enzymatic, 11(4), 777-786.
Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, & De Rosa M. (1998). Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles, 2(4), 409-416.
Doran PM, & Bailey JE. (1986). Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnology and Bioengineering, 28(1), 73-87.
El-Bashiti T, Hamamcı H, Öktem HA, & Yücel M. (2005). Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Science, 169(1), 47-54.
Elbein AD, Pan Y, Pastuszak I, & Carroll D. (2003). New insights on trehalose: A multifunctional molecule. Glycobiology, 13(4), 17R-27R.
Eleutherio EC, Araujo PS, & Panek AD. (1993). Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology, 30(6), 591-596.
Fang TY, Hung XG, Shih TY, & Tseng WC. (2004). Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles, 8(4), 335-343.
Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, & Pandey A. (2009). Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food research international, 42(4), 436-442.
Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, & Dietrich J. (2001). Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiology Letters, 194(2), 201-206.
Higashiyama T. (2002). Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7), 1263-1269.
Hounsa CG, Brandt EV, Thevelein J, Hohmann S, & Prior BA. (1998). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 144(3), 671-680.
Kammann M, Laufs Jr, Schell J, & Gronenborn B. (1989). Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Research, 17(13), 5404.
Kato M, Miura Y, Kettoku M, Shindo K, Iwamatsu A, & Kobayashi K. (1996). Purification and characterization of new trehalose-producing enzymes isolated from the hyperthermophilic archae, Sulfolobus solfataricus KM1. Bioscience, Biotechnology, and Biochemistry, 60(3), 546-550.
Kato M, Takehara K, Kettoku M, Kobayashi K, & Shimizu T. (2000). Subsite structure and catalytic mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM1. Bioscience, Biotechnology, and Biochemistry, 64(2), 319-326.
Kobayashi K, Kato M, Miura Y, Kettoku M, Komeda T, & Iwamatsu A. (1996). Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Bioscience, Biotechnology, and Biochemistry, 60(11), 1882-1885.
Kobayashi K, Komeda T, Miura Y, Kettoku M, & Kato M. (1997). Production of trehalose from starch by novel trehalose-producing enzymes from Sulfolobus solfataricus KM1. Journal of fermentation and bioengineering, 83(3), 296-298.
Kobayashi M, Kubota M, & Matsuura Y. (2003). Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius. Journal of Applied Glycoscience, 50(1), 1-8.
Kubota M, Maruta K, Fukuda S, Kurimoto M, Tsujisaka Y, Kobayashil M, & Matsuura Y. (2001). Structure and function analysis of malto-oligosyltrehalose synthase. Journal of Applied Glycoscience, 48(2), 153-161.
Lama L, Nicolaus B, Trincone A, Morzillo P, De Rosa M, & Gambacorta A. (1990). Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnology Letters, 12(6), 431-432.
Ling MM, & Robinson BH. (1997). Approaches to DNA mutagenesis: an overview. Analytical biochemistry, 254(2), 157-178.
Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, & Head SR. (2015). Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial cell factories, 14(1), 1.
Mamat U, Woodard RW, Wilke K, Souvignier C, Mead D, Steinmetz E, Terry K, Kovacich C, Zegers A, & Knox C. (2013). Endotoxin-free protein production-ClearColi (TM) technology. In): Nature publishing group, macmillan building, 4 crinan st, London N1 9XW, England.
Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, & Kurimoto M. (1996). Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-ll. Bioscience, Biotechnology, and Biochemistry, 60(4), 717-720.
Matsuo T. (2001). Trehalose protects corneal epithelial cells from death by drying. British Journal of Ophthalmology, 85(5), 610-612.
Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, & Tsujisaka Y. (1996). Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Bioscience, biotechnology, and biochemistry, 60(2), 263-266.
Richards A, Krakowka S, Dexter L, Schmid H, Wolterbeek A, Waalkens Berendsen D, Shigoyuki A, & Kurimoto M. (2002). Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology, 40(7), 871-898.
Rosano GL, & Ceccarelli EA. (2009). Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial cell factories, 8(1), 41.
Schiraldi C, Di Lernia I, & De Rosa M. (2002). Trehalose production: exploiting novel approaches. Trends in Biotechnology, 20(10), 420-425.
Teramoto N, Sachinvala ND, & Shibata M. (2008). Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules, 13(8), 1773-1816.
Tseng WC, Lin JW, Wei TY, & Fang TY. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry, 375(2), 376-378.
Zhang Y, Zhang T, Chi Z, Wang JM, Liu GL, & Chi ZM. (2010). Conversion of cassava starch to trehalose by Saccharomycopsis fibuligera A11 and purification of trehalose. Carbohydrate Polymers, 80(1), 13-18.