跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵珮榕
研究生(外文):Shao, Pei-Jung
論文名稱:建立美麗海葵的生殖生理之研究基礎—未來能作為研究珊瑚的模式物種嗎?
論文名稱(外文):Can Exaiptasia pallida, a sea anemone, become a key to understand molecular/cellular/endocrine mechanisms of coral reproduction?
指導教授:識名信也
指導教授(外文):Shikina, Shinya
口試委員:張清風湯森林
口試委員(外文):Chang, Ching-FongTang, Sen-Lin
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境與生態研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:美麗海葵有性生殖無性繁殖系生殖細胞標記基因vasa配子生成生殖腺轉錄體基因減弱RNA干擾
外文關鍵詞:Exaiptasia pallidasexual reproductionclonal strainsgermline cell markervasagametogenesisgonadal transcriptomegene knockdownRNAi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
珊瑚礁在地球上占不到0.1%的表面積,卻是生物多樣性最高的地區之一,提供海洋生物棲息、庇護及孕育的場所。然而因全球氣候變遷及人為活動使珊瑚礁生態受到嚴重破壞,其族群數量銳減,利用人工養殖方式復育珊瑚是當前熱門且重要的議題。現今珊瑚復育大多以無性生殖為主,目前對於有性生殖相關研究甚少,若能瞭解珊瑚有性生殖的生理機制並結合無性生殖的優點,將對珊瑚復育有極大幫助,但目前珊瑚在研究上受到許多限制,例如:採集樣本使族群數量減少。為此學者以海葵取代珊瑚作為研究珊瑚生理機制之物種,不僅因海葵無性生殖所增生小海葵的數量繁多且較珊瑚快速,且以海葵做實驗的便利性、以及兩者在生理構造上的相似性,使海葵成為目前研究珊瑚的新興模式物種。本研究希望利用美麗海葵 (Exaiptasia pallida) 作為珊瑚有性生殖研究的模式物種。為了探討刺絲胞動物 (珊瑚) 有性生殖之配子生成,本次建立美麗海葵的生殖生理之研究基礎,如下:(1) 建立雌雄美麗海葵無性繁殖系 (clonal strain) 作為未來實驗材料;(2) 為了準確地偵測生殖細胞,選殖生殖細胞標記基因vasa,並以免疫組織化學染色 (IHC) 確認生殖細胞的位置;(3) 為瞭解不同發育階段的海葵生殖細胞發育之狀態,以IHC確認海葵開始進行配子生成之底盤直徑大小,發現雄性海葵較雌性海葵早進行配子生成;(4) 建立海葵生殖腺轉錄體資料庫及gene knockdown (RNAi) 技術以確認vasa基因的功能,發現vasa可能對於生殖細胞的生存及增生有關。由以上結果及建立之技術,未來可進一步研究海葵有性生殖生理機制或環境因子對於有性生殖的影響,並擴大探討至刺絲胞動物,如珊瑚有性生殖的生理機制,以完成人工養殖復育珊瑚的目標。
Coral reefs play an important role as a refuge, feeding ground and nursery for various coral reef organisms. In recent decade, due to global climate change and human activity, coral reefs have been seriously damaged. In order to conserve the future coral population and reef environment, new knowledge, techniques and actions are required. Aquaculture of scleractinian corals is expected as a methodology to propagate target coral species and conserve their genetic resources. Knowledge of molecular and endocrine mechanisms underlying sexual reproduction would allow us to establish an advanced aquaculture system such as “full-life cycle aquaculture of corals” by using the gametes obtained from cultured corals in aquaria. However, molecular and endocrine mechanisms of germ cell development are still poorly understood throughout cnidarians. To address this issue, we thought that a sea anemone Exaiptasia pallida, an emerging model in cnidarian, can be used as a model to study the molecular/cellular/
endocrine mechanisms of sexual reproduction in cnidarians. Taxonomically, E. pallida belongs to the same class as scleractinian corals “Anthozoa” in phylum Cnidaria. They exhibit various similarities to corals physiologically and morphologically. To this end, we have established research basis for the studies of E. pallida reproduction as follows; (1) Establishment of 4 clonal strains of E. pallida; (2) Identification of a marker gene for E. pallida germline cells, vasa; (3) Determination of the pedal size of E. pallida in which gametogenesis occurs, and (4) Development of techniques for gene inactivation (RNA interference) in E. pallida. These strong research bases that we established would be valuable and reveal the molecular and endocrine mechanisms of sexual reproduction of cnidarians including stony corals in the future studies.
謝辭 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VII
圖目錄 VIII
緒論 1
一、珊瑚礁的重要與其現況 1
二、珊瑚的復育狀況 2
三、研究珊瑚遇到的問題 3
四、研究目的 3
第壹章 建立美麗海葵無性繁殖系 4
一、前言 4
1.刺絲胞動物 4
2.海葵的分類、構造及習性 4
3.美麗海葵 (Exaiptasia pallida) 5
二、實驗目的 6
三、分析方法及材料 6
1.樣本採集及建立無性繁殖系之海葵 (Clonal strains) 6
2.組織切片 6
3.蘇木紫-伊紅染色 (Hematoxylin & Eosin stain,簡稱HE染色) 8
4.Genomic DNA 萃取 8
5.聚合酶連鎖反應 (Polymerase Chain Reaction,又稱PCR) 8
6.DNA 萃取 (DNA Extraction) 10
7.基因選殖 10
8.親緣關係分析 11
9.無性繁殖系海葵無性生殖能力之比較 12
10.統計方法 12
四、結果 12
1.無性繁殖系飼養情形 12
2.無性繁殖系與世界各地美麗海葵之親緣關係 13
3.海葵體內共生藻系群分析 13
4.無性繁殖系海葵的無性生殖能力之比較 13
5.無性繁殖系海葵體內生殖腺發育狀況 13
五、討論 14
第貳章 選殖美麗海葵生殖細胞標記基因vasa 16
一、前言 16
1.Vasa基因及Vasa蛋白質的功能 16
二、實驗目的 16
三、分析方法及材料 17
1.全量核醣核酸之萃取 (Total RNA extraction) 17
2.Genomic DNA之去除 (DNase I treatment) 17
3.反轉錄合成cDNA (Reverse Transcription) 18
4.cDNA末端快速擴增反應 (Rapid amplification of cDNA ends) 19
5.聚合酶連鎖反應 (Polymerase Chain Reaction,又稱PCR) 20
6.DNA 萃取 (DNA Extraction) 22
7.基因選殖及序列比對 22
8.蛋白質分子量及結構域 22
9.即時聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction,又稱qPCR) 22
10.Vasa抗體製備 23
11.SDS-PAGE及西方墨點法 (Western blot) 23
12.組織切片 27
13.蘇木紫-伊紅染色 (HE染色) 27
14.免疫組織化學染色 (Immunohistochemistry,又稱IHC) 27
四、結果 28
1.E. pallida vasa基因選殖 28
2.E. pallida vasa基因在不同組織中之表現 29
3.E. pallida Vasa蛋白質在不同組織中之表現 29
4.E. pallida Vasa蛋白質在生殖腺的表現位置及細胞型態 29
5.E. pallida Vasa蛋白質在底盤及觸手之表現 30
五、討論 30
第參章 不同發育階段美麗海葵生殖細胞發育之狀態 32
一、前言 32
1.動物配子生成 32
2.海葵配子生成 32
二、實驗目的 33
三、分析方法及材料 33
1.海葵樣本採集、組織切片及免疫組織化學染色 33
2.精巢發育時期統計 33
3.雌性生殖細胞大小計算 34
4.統計方法 34
四、結果 34
1.美麗海葵無性生殖小裂片之Vasa蛋白質表現 34
2.雄性美麗海葵配子生成之過程 34
3.雌性美麗海葵配子生成之過程 35
五、討論 36
第肆章 建立美麗海葵gene knockdown (RNAi) 技術 38
一、前言 38
1.轉錄體 38
2.RNA interference (RNAi) 38
二、實驗目的 39
三、分析方法及材料 39
1.生殖腺轉錄體資料庫建立 39
2.尋找RNAi相關蛋白質 40
3.dsRNA製備 40
4.dsRNA treatment 43
5.確認vasa mRNA表現量 44
6.生殖細胞計數 44
7.統計分析 45
四、結果 45
1.美麗海葵生殖腺轉錄體定序 45
2.美麗海葵體內RNAi機制相關之蛋白質 45
3.vasa-dsRNA treatment對美麗海葵vasa mRNA表現量及生殖細胞數量之影響 46
五、討論 46
結論 49
參考文獻 83
戴昌鳳,1995。珊瑚礁與環境變遷。師友月刊,第333期,28-32頁。
戴昌鳳,2011。台灣珊瑚礁地圖(上) 台灣本島篇,天下遠見出版股份有限公司。
戴昌鳳、秦啟翔、鄭安怡,2013。東沙珊瑚生態圖鑑。月牙商業設計有限公司。
澎湖縣水產種苗繁殖場全球資訊網。www.phmlps.gov.tw
LifeMap Discovery. https://discovery.lifemapsc.com/
NTU Galaxy http://140.112.94.76/c4galaxy/?page_id=316
Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 34, 661-689.
Baumgarten, S., Simakov, O., Esherick, L. Y., Liew, Y. J., Lehnert, E. M., Michell, C. T., and Gough, J. (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proceedings of the National Academy of Sciences, 112, 11893-11898.
Bijma, J. (2009). Impacts of ocean acidification. Science policy briefing. www.esf.org
Birkeland, C. (1997). Life and death of coral reefs. Chapman and Hall, New York.
Burke L., Reytar K., Spalding M., and Perry A. (2004). Reefs at risk revisited. World Resources Institute, Washington, DC.
Capecchi, M. R. (1989). The new mouse genetics: altering the genome by gene targeting. Trends in Genetics, 5, 70-76.
Chang, C. C., Dearden, P., and Akam, M. (2002). Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Developmental Biology, 252, 100-118.
Chen, C. J., Shikina, S., Chen, W. J., Chung, Y. J., Chiu, Y. L., Bertrand, J. A., Lee, Y. H., and Chang, C. F. (2016). A novel female-specific and sexual reproduction-associated Dmrt gene discovered in the stony coral, Euphyllia ancora. Biology of Reproduction, 94, 1-13.
Chen, C., Soong, K., and Chen, C. A. (2008). The smallest oocytes among broadcast-spawning actiniarians and a unique lunar reproductive cycle in a unisexual population of the sea anemone, Aiptasia pulchella (Anthozoa: Actiniaria). Zoological Studies, 47, 37-45.
Chia, F. S. (1976). Sea anemone reproduction: patterns and adaptive radiations. In Coelenterate ecology and behavior, 261-270. Chapman and Hall, New York.
Clayton Jr, W. S. (1985). Pedal laceration by the anemone Aiptasia pallida. Marine Ecology Progress Series. Oldendorf, 21, 75-80.
Darling, J. A., Reitzel, A. R., Burton, P. M., Mazza, M. E., Ryan, J. F., Sullivan, J. C., and Finnerty, J. R. (2005). Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays, 27, 211-221.
Deloitte Access Economics. (2013). Economic contribution of the Great Barrier Reef. Townsville: Great Barrier Reef Marine Park Authority.
Demers, C., Hamdy, C. R., Corsi, K., Chellat, F., Tabrizian, M., and Yahia, L. H. (2002). Natural coral exoskeleton as a bone graft substitute: a review. Bio-medical Materials and Engineering, 12, 15-35.
DeSalvo, M. K., Sunagawa, S., Fisher, P. L., Voolstra, C. R., Iglesias-Prieto, R., and Medina, M. (2010). Coral host transcriptomic states are correlated with Symbiodinium genotypes. Molecular Ecology, 19, 1174-1186.
Dulvy, N. K., Stanwell-Smith, D., Darwall, W. R., and Horrill, C. J. (1995). Coral mining at Mafia Island, Tanzania: a management dilemma. Ambio, 24, 358-365.
Dunn, S. R., Phillips, W. S., Green, D. R., and Weis, V. M. (2007). Knockdown of actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida. The Biological Bulletin, 212, 250-258.
Eckelbarger, K. J., Hand, C., and Uhlinger, K. R. (2008). Ultrastructural features of the trophonema and oogenesis in the starlet sea anemone, Nematostella vectensis (Edwardsiidae). Invertebrate Biology, 127, 381-395.
Extavour, C. G., Pang, K., Matus, D. Q., and Martindale, M. Q. (2005). vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evolution and development, 7, 201-215.
Fabioux, C., Corporeau, C., Quillien, V., Favrel, P., and Huvet, A. (2009). In vivo RNA interference in oyster–vasa silencing inhibits germ cell development. The FEBS journal, 276, 2566-2573.
Fire, A., Xu, S., Montgomery, M. K., and Kostas, S. A. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806.
Fournier, A. (2013). The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. BioSciences Master Reviews, 1-8.
Friese, C. (2009). Models of cloning, models for the zoo: rethinking the sociological significance of cloned animals. Biosocieties, 4, 367-390.
Grawunder, D., Hambleton, E. A., Bucher, M., Wolfowicz, I., Bechtoldt, N., and Guse, A. (2015). Induction of gametogenesis in the cnidarian endosymbiosis model Aiptasia sp. Scientific Reports, 5, 15677.
Grigg, R. W. (1994). Community structure, succession and development of coral reefs in Hawaii. A Natural History of the Hawaiian Islands: Selected Readings II, 196.
Gruidl, M. E., Smith, P. A., Kuznicki, K. A., McCrone, J. S., Kirchner, J., Roussell, D. L., Strome, S. and Bennett, K. L. (1996). Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 93, 13837-13842.
Gustafson, E. A., and Wessel, G. M. (2010). Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays, 32, 626-637.
Hambleton, E. A., Guse, A., and Pringle, J. R. (2014). Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. Journal of Experimental Biology, 217, 1613-1619.
Hand, C., and Uhlinger, K. R. (1992). The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. The Biological Bulletin, 182, 169-176.
Hand, C., and Uhlinger, K. R. (1995). Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invertebrate Biology, 114, 9-18.
Herrera, M., Ziegler, M., Voolstra, C. R., and Aranda, M. (2017). Laboratory-cultured strains of the sea anemone Exaiptasia reveal distinct bacterial communities. Frontiers in Marine Science, 4, 115.
Hinsch, G. W., and Moore, J. A. (1992). The structure of the reproductive mesenteries of the sea anemone Ceriantheopsis americanus. Invertebrate Reproduction and Development, 21, 25-32.
Jameson, S. C., McManus, J. W., and Spalding, M. D. (1995). State of the reefs: regional and global perspectives. Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, US Department of Commerce.
Jennison, B. L. (1979). Gametogenesis and reproductive cycles in the sea anemone Anthopleura elegantissima (Brandt, 1835). Canadian Journal of Zoology, 57, 403-411.
Jennison, B. L. (1981). Reproduction in three species of sea anemones from Key West, Florida. Canadian Journal of Zoology, 59, 1708-1719.
Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mechanisms of Development, 99, 139-142.
Kuales, G., De Mulder, K., Glashauser, J., Salvenmoser, W., Takashima, S., Hartenstein, V., Berezikov, E., Salzburger, W and Ladurner, P. (2011). Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Developmental Biology, 357, 117-132.
Kunz, W., and Schafer, U. (1978). Oogenesis and spermatogenesis. Gustav Fischer Verlag, Stuttgart, German Federal Republic.
Kuznicki, K. A., Smith, P. A., Leung-Chiu, W. M., Estevez, A. O., Scott, H. C., and Bennett, K. L. (2000). Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development, 127, 2907-2916.
Levitan, S., Sher, N., Brekhman, V., Ziv, T., Lubzens, E., and Lotan, T. (2015). The making of an embryo in a basal metazoan: Proteomic analysis in the sea anemone Nematostella vectensis. Proteomics, 15, 4096-4104.
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402-408.
Lotan, T., Chalifa-Caspi, V., Ziv, T., Brekhman, V., Gordon, M. M., Admon, A., and Lubzens, E. (2014). Evolutionary conservation of the mature oocyte proteome. EuPA Open Proteomics, 3, 27-36.
McAllister, D. E., Schueler, F. W., Roberts, C. M., and Hawkins, J. P. (1994). Mapping and GIS analysis of the global distribution of coral reef fishes on an equal-area grid. In Mapping the diversity of nature, 155-175
Meister, G., and Tuschi, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature, 431, 343-349.
Mochizuki, K., Nishimiya-Fujisawa, C., and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Development Genes and Evolution, 211, 299-308.
Moran, Y., Praher, D., Fredman, D., and Technau, U. (2013). The evolution of microRNA pathway protein components in Cnidaria. Molecular biology and Evolution, 30, 2541-2552.
Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 2, 279-289.
Odum, H. T., and Odum, E. P. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs, 25, 291-320.
Oftedal, O. T., and Gittleman, J. L. (1989). Patterns of energy output during reproduction in carnivores. In Carnivore behavior, ecology, and evolution, 355-378. Chapman and Hall, New York.
Omori, M., and Iwao, K. (2014). Methods of farming sexually propagated corals and outplanting for coral reef rehabilitation; with list of references for coral reef rehabilitation through active restoration measure. Akajima Marine Science Laboratory, Okinawa.
Pankow, S., and Bamberger, C. (2007). The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One, 2, e782.
Perez, S. F., Cook, C. B., and Brooks, W. R. (2001). The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. Journal of Experimental Marine Biology and Ecology, 256, 1-14.
Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., and Jurka, J. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science, 317, 86-94.
Rebscher, N., Volk, C., Teo, R., and Plickert, G. (2008). The germ plasm component Vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Developmental Dynamics, 237, 1736-1745.
Reitzel, A. M., Burton, P. M., Krone, C., and Finnerty, J. R. (2007). Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission. Invertebrate Biology, 126, 99-112.
Rodriguez-Lanetty, M., Loh, W., Carter, D., and Hoegh-Guldberg, O. (2001). Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Marine Biology, 138, 1175-1181.
Schupbach, T., and Wieschaus, E. (1986). Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Developmental Biology, 113, 443-448.
Scott, A., and Harrison, P. (2007). Broadcast spawning of two species of sea anemones, Entacmaea quadricolor and Heteractis crispa, that host anemonefish. Invertebrate Reproduction and Development, 50, 163-171.
Shikina, S., Chen, C. J., Liou, J. Y., Shao, Z. F., Chung, Y. J., Lee, Y. H., and Chang, C. F. (2012). Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa). PloS One, 7, e41569.
Shikina, S., Chiu, Y. L., Lee, Y. H., and Chang, C. F. (2015). From somatic cells to oocytes: a novel yolk protein produced by ovarian somatic cells in a stony coral, Euphyllia ancora. Biology of Reproduction, 93, 1-10.
Shikina, S., Chung, Y. J., Wang, H. M., Chiu, Y. L., Shao, Z. F., Lee, Y. H., and Chang, C. F. (2015). Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis. Coral Reefs, 34, 639-653.
Shikina, S., Chung, Y. J., Chiu, Y. L., Huang, Y. J., Lee, Y. H., and Chang, C. F. (2016). Molecular cloning and characterization of a steroidogenic enzyme, 17β-hydroxysteroid dehydrogenase type 14, from the stony coral Euphyllia ancora (Cnidaria, Anthozoa). General and Comparative Endocrinology, 228, 95-104.
Shinn, E. A. (1966). Coral growth-rate, an environmental indicator. Journal of Paleontology, 40, 233-240.
Slattery, M., Hines, G. A., and Watts, S. A. (1997). Steroid metabolism in Antarctic soft corals. Polar Biology, 18, 76-82.
Slattery, M., Hines, G. A., Starmer, J., and Paul, V. J. (1999). Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reefs, 18, 75-84.
Smith, S. V. (1978). Coral-reef area and the contributions of reefs to processes and resources of the world's oceans. Nature, 273, 225-226.
Spalding, M. D., and Grenfell, A. M. (1997). New estimates of global and regional coral reef areas. Coral Reefs, 16, 225-230.
Spike, C., Meyer, N., Racen, E., Orsborn, A., Kirchner, J., Kuznicki, K., and Strome, S. (2008). Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Genetics, 178, 1973-1987.
Sunagawa, S., Wilson, E. C., Thaler, M., Smith, M. L., Caruso, C., Pringle, J. R., Weis, V. M., Medina, M. and Schwarz, J. A. (2009). Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BioMed Central genomics, 10, 258.
Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., and Noce, T. (2000). The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes and Development, 14, 841-853.
Tarrant, A. M., Blomquist, C. H., Lima, P. H., Atkinson, M. J., and Atkinson, S. (2003). Metabolism of estrogens and androgens by scleractinian corals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136, 473-485.
Thornhill, D. J., Xiang, Y., Pettay, D. T., Zhong, M., and Santos, S. R. (2013). Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Molecular Ecology, 22, 4499-4515.
Traylor-Knowles, N. G., Kane, E. G., Sombatsaphay, V., Finnerty, J. R., and Reitzel, A. M. (2015). Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis. EvoDevo, 6, 13.
Tulin, S., Aguiar, D., Istrail, S., and Smith, J. (2013). A quantitative reference transcriptome for Nematostella vectensis earlyembryonic development: a pipeline for de novo assembly in emergingmodel systems. EvoDevo, 4, 16.
Twan, W. H., Hwang, J. S., and Chang, C. F. (2003). Sex steroids in scleractinian coral, Euphyllia ancora: implication in mass spawning. Biology of Reproduction, 68, 2255-2260.
Twan, W. H., Hwang, J. S., Lee, Y. H., Jeng, S. R., Yueh, W. S., Tung, Y. H., Wu, H.F., Dufour, S. and Chang, C. F. (2006). The presence and ancestral role of gonadotropin-releasing hormone in the reproduction of scleractinian coral, Euphyllia ancora. Endocrinology, 147, 397-406.
Wedi, S. E., and Dunn, D. F. (1983). Gametogenesis and reproductive periodicity of the subtidal sea anemone Urticina lofotensis (Coelenterata: Actiniaria) in California. The Biological Bulletin, 165, 458-472.
Weis, V. M., Davy, S. K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., and Pringle, J. R. (2008). Cell biology in model systems as the key to understanding corals. Trends in Ecology and Evolution, 23, 369-376.
Westphal, C. H., and Leder, P. (1997). Transposon-generated ‘knock-out’and ‘knock-in’gene-targeting constructs for use in mice. Current Biology, 7, 530-533.
Wilkinson, C. (2008). Status of coral reefs of the world: 2008, 298. Townsville: Global Coral Reef Monitoring Network.
Wolfowicz, I., Baumgarten, S., Voss, P. A., Hambleton, E. A., Voolstra, C. R., Hatta, M., and Guse, A. (2016). Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Scientific Reports, 6, 32366.
Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R., and Grossman, A. R. (2013). Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. Journal of Phycology, 49, 447-458.
Yeemin, T., Sutthacheep, M., and Pettongma, R. (2006). Coral reef restoration projects in Thailand. Ocean and Coastal management, 49, 562-575.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top