跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃思穎
研究生(外文):Huang, Ssu-Ying
論文名稱:探討大型矽藻Ditylum brightwellii 在不同氮環境下硝酸運輸基因表現情形
論文名稱(外文):Cloning of nitrate transporter genes in a diatom Ditylum brightwellii and assessing their gene expression under different nitrogen status
指導教授:康利國
指導教授(外文):Kang, Lee-Kuo
口試委員:張正黃聲蘋
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境與生態研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:35
中文關鍵詞:硝酸鹽銨鹽硝酸運輸基因矽藻Ditylum brightwellii基因表現量
外文關鍵詞:nitrateammoniumnitrate transporterdiatomDitylum brightwelliitranscript level
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在海洋環境中氮源經常被認為是限制浮游植物成長的營養源。細胞膜上的硝酸運輸蛋白被認為在硝酸利用上扮演重要的角色,其基因Nrt2在因應不同氮環境的改變有不同的基因表現情形。在本研究中以體型較大矽藻Ditylum brightwellii 為模式物種,藉由監測其 Nrt2 基因表現並與其他矽藻種類進行比較,希望探討不同體型大小矽藻對於氮源利用之間的差異。為了確認D. brightwellii 中的Nrt2 基因家族,利用海洋真核微生物全轉錄體資料庫 (MMETSP) 中進行D. brightwellii Nrt2 相似序列之比對,並利用實驗室培養的D. brightwellii藻種再次定序確認,一共定序出四條Nrt2基因,其中DbNrt2A及DbNrt2D 為過去文獻尚未報導之形式。將D. brightwellii培養在不同氮環境下,發現培養在以硝酸鹽為氮源的情況有較高生長率 (1.06 day-1),而培養在以銨為氮源下細胞生長明顯受到高濃度銨的抑制,只能在低銨 (100 μM )濃度下生長。比較D. brightwellii 在不同氮環境下硝酸運輸基因的表現模式,發現僅有DbNrt2C會受到銨的抑制,但在缺氮底下會提高表現,此結果與Thalassiosira pseudonana Nrt2.1及Nrt2.2的表現模式相似,但基因表現量變化範圍僅其1/100倍。由此顯示細胞較大的D. brightwellii 在Nrt2基因調節上相對於小細胞T. pseudonana較不敏感,可能與D. brightwellii 生長受銨鹽限制有關。
Nitrogen is often considered as a major nutrient limiting phytoplankton growth in the marine environments. Nitrate transporter protein located on the cell membrane is thought to play an important role in nitrate uptake, and its gene, Nrt2, possesses different gene expression in response to different nitrogen environments. In this study, the gene expression of Nrt2 genes was monitored in a diatom, Ditylum brightwellii to compare with that in other diatoms species. In order to confirm the Nrt2 gene family in D. brightwellii, Nrt2 similar sequences were searched in the D. brightwellii transcriptome databases in Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) and confirmed by PCR from genomic DNA and sequencing. In total, four Nrt2 genes were identified, and DbNrt2A and DbNrt2D have not been reported in the litertures. When D. brightwellii was grown with nitrate as the sole nitrogen source, cell density increased exponentially for 5 days with a growth rate of 1.06 day-1. However, its growth was significantly affected by ammonium, especially when the initial ammonium concentration is higher than 100 μM. Monitoring the expression pattern of nitrate transporter genes under different nitrogen conditions, only the transcript level of DbNrt2C was repressed by ammonium, but induced under nitrogen deficiency. This gene expression pattern was consistent with that of T. pseudonana Nrt2.1 and Nrt2.2, but the transcription levels varied in D. brightwellii was only 1/100-fold of that in T. pseudonana. These results suggested that D. brightwellii is less sensitive to regulate the gene expression of Nrt2 gene than T. pseudonana, which might associated with its growth limited by ammonium.
致謝 I
摘要 II
Abstract III
目次 IV
表次 V
圖次 VI
前言 1
材料與方法 4
一、培養實驗 4
二、矽藻計數 4
三、族群指數生長率 5
四、光合作用最大量子效率 (Fv/Fm) 5
五、基因表現量 5
結果 9
一、Ditylum brightwellii 硝酸運輸基因之選殖 9
二、培養氮源條件之測試 9
三、監測Nrt2 基因在不同氮條件下之表現情形 10
四、Nrt2 基因表現量 11
討論 12
一、引用全轉錄體基因庫搜尋基因家族 12
二、矽藻基因家族成員 12
三、不同氮源下之培養狀況 12
四、參考基因之選擇 13
五、不同形式之表現情形 13
六、細胞大或小是否會影響基因調控 13
參考文獻 15
附錄 33
Beardall, J., Berman, T., Heraud, P., Kadiri, M. O., Light, B. R., Patterson, G., et al. 2001. A comparison of methods for detection of phosphate limitation in microalgae. Aquatic Sciences, 63:107-121.
Bloom, A. J., Sukrapanna, S. S., and Warner, R. L. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant physiology, 99:1294-1301.
Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. The Plant Cell, 7: 859.
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10:1135-1142.
Eppley, R. W., Holmes, R. W., and Paasche, E. 1967. Periodicity in cell division and physiological behavior of Ditylum brightwellii, a marine planktonic diatom, during growth in light-dark cycles. Archives of Microbiology, 56, 305-323.
Falkowski, P. G. 1975. Nitrate uptake in marine phytoplankton: Comparison of half‐saturation constants from seven species. Limnology and Oceanography, 20: 412-417.
Falkowski, P. G. 2002. The ocean's invisible forest. Scientific American, 287: 54-61.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305:354-360.
Fernandez, E., and Galvan, A. 2007. Inorganic nitrogen assimilation in Chlamydomonas. Journal of Experimental Botany, 58:2279-2287.
Galván, A., Rexach, J., Mariscal, V., and Fernández, E. 2002. Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process. Journal of Experimental Botany, 53:845-853.
Glibert, P. M., Wilkerson, F. P., Dugdale, R. C., Raven, J. A., Dupont, C. L., Leavitt, P. R., et al. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen‐enriched conditions. Limnology and Oceanography, 61:165-197.
Guillard, R. R., and Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8:229-239.
Hecky, R., and Kilham, P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33:796-822.
Jung, S. W., Youn, S. J., Shin, H. H., Yun, S. M., Ki, J.-S., Lee, J. H. 2013. Effect of temperature on changes in size and morphology of the marine diatom, Ditylum brightwellii (West) Grunow (Bacillariophyceae). Estuarine, Coastal and Shelf Science, 135:128-136.
Kang, L. K., Hwang, S. P. L., Lin, H. J., Chen, P. C., and Chang, J. 2009. Establishment of minimal and maximal transcript levels for nitrate transporter genes for detecting nitrogen deficiency in the marine phytoplankton Isochrysis galbana (Prymnesiophyceae) and Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 45: 864-872.
Koester, J. A., Brawley, S. H., Karp-Boss, L., and Mann, D. G. 2007. Sexual reproduction in the marine centric diatom Ditylum brightwellii (Bacillariophyta). European Journal of Phycology, 42: 351-366.
Lalli, C., and Parsons, T. R. 1997. Biological Oceanography: An Introduction: Butterworth-Heinemann.
Lea, P. J., Robinson, S. A., and Stewart, G. R. 1990. The enzymology and metabolism of glutamine, glutamate, and asparagine. The Biochemistry of Plants, 16: 121-159.
Lee, M., and Li, C.-W. 1992. The origin of the silica deposition vesicle of diatoms. Botanical Bulletin of Academia Sinica, 33: 317-325.
Li, C.-W., Chu, S., and Lee, M. 1989. Characterizing the silica deposition vesicle of diatoms. Protoplasma, 151: 158-163.
Li, C.-W., and Volcani, B. 1984. Aspects of silicification in wall morphogenesis of diatoms. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 304: 519-528.
Li, C.-W., and Volcani, B. 1985. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Protoplasma, 124: 10-29.
Okamoto, M., Vidmar, J. J., and Glass, A. D. 2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant and Cell Physiology, 44: 304-317.
Orsel, M., Krapp, A., and Daniel-Vedele, F. 2002. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology, 129: 886-896.
Pickett-Heaps, J., Wetherbee, R., and Hill, D. 1988. Cell division and morphogenesis of the labiate process in the centric diatom Ditylum brightwellii. Protoplasma, 143: 139-149.
Pollock, F. M., and Pickett‐Heaps, J. D. 2005. Spatial determinants in morphogenesis: recovery from plasmolysis in the diatom Ditylum. Cytoskeleton, 60: 71-82.
Pollock, F. M. and Pickett-Heaps, J. D. 2006. Valve formationwithout mitosis in the diatom Ditylum recovering from plasmolysis. Nova Hedwigia, 130: 119–126.
Privalle, L. S., Lahners, K. N., Mullins, M. A., and Rothstein, S. 1989. Nitrate effects on nitrate reductase activity and nitrite reductase mRNA levels in maize suspension cultures. Plant Physiology, 90: 962-967.
Rexach, J., Fernández, E., and Galván, A. 2000. The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport. The Plant Cell, 12: 1441-1453.
Song, B., and Ward, B. B. 2007. Molecular cloning and characterization of high‐affinity nitrate transporters in marine phytoplankton. Journal of Phycology, 43: 542-552.
Sun, S., Chen, J., Li, W., Altintas, I., Lin, A., Peltier, S., Stocks, K. et al. 2011 Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Research, 39: D546–D551.
Vincentz, M., and Caboche, M. 1991. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. The EMBO Journal, 10: 1027.
Waite, A., and Harrison, P. J. 1992. Role of sinking and ascent during sexual reproduction in the marine diatom Ditylum brightwellii. Marine Ecology Progress Series, 113-122.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊