跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周相如
研究生(外文):Chou, Xiang-Ru
論文名稱:氧化鋅奈米柱結構變化影響氧化鋅薄膜電激發光元件特性之研究
論文名稱(外文):A Study in Emission Properties of ZnO Thin-Film Electroluminescent Devices with different ZnO nanorod Structures
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chang, Chung-Cheng
口試委員:吳炳昇施東河鄭國順許渭州張忠誠
口試日期:2016-12-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:氧化鋅奈米柱低溫水溶液合成法氧化鋅奈米柱對電激發光元件光學影響
外文關鍵詞:ZnO nanorodsLow-temperature aqueous solution methodThe optical influence of ZnO nanorod on electroluminescence device
相關次數:
  • 被引用被引用:2
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用P-Si(100)基板,以射頻磁控濺鍍法將三氧化二鋁(Al2O3)薄膜以及氧化鋅種子層(ZnO seed)沉積在基板上,接下來再以低溫水溶液合成法成長一維氧化鋅奈米柱,探討不同水溶液濃度以及不同成長時間下,利用掃描式電子顯微鏡、X-ray繞射分析儀、光激發螢光光譜、CIE色座標、I-V曲線等,分析不同尺寸大小的奈米柱結構變化對光學特性的影響。
本實驗所製作之電激發光元件架構為ITO/ZnO nanorods/ZnO seed/
Al2O3/P+-Si/Al,低溫水溶液合成法所使用材料分別為為六甲基四胺(C6H12N4)與二水合醋酸鋅(Zn(CH3COO)2),將其粉末與水溶液混和後,在90℃的環境氛圍下,以不同濃度以及不同成長時間合成一維氧化鋅奈米柱,用以探討一維氧化鋅奈米柱對於氧化鋅薄膜之電激發光元件之光學影響。
本實驗分別以0.01M、0.02M、0.03M三種水溶液濃度,各別沉積30、60、90以及120分鐘來去探討不同尺寸大小的奈米柱對光學的影響以及找出最佳化的參數,從實驗各項數據來看0.03M 水溶液中成長60分鐘之元件,有最佳的發光強度,伴隨著沉積時間越久,鋅間隙和氧空位比例大幅提升,可見光波長強度越來越強,主波長會逐漸漂移至可見光波長。
In this experiment, P-Si(100) is used mainly as substrate, after deposit Al2O3 thin film and ZnO seed layer on the substrate by RF magnetron sputtering method. Then, grow one dimensional ZnO nanorods by used low temperature aqueous solution meth, by exploring vary with concentration and grown time of aqueous solution, and take advantage of methods such as scanning electron microscope, X-ray diffractometer, photoluminescence spectrum, CIE chromaticity coordinate, I-V curve, etc., the influence of the variety of the structure of ZnO nanorods on the optical property then different size analysis.
The architecture of electroluminescence device prepared by this experiment is ITO/ZnO nanorods/ZnO seed/ Al2O3/P+-Si/Al, C6H12N4 and Zn(CH3COO)2 are used material in low temperature aqueous solution meth respectively, after mixed the two powders and aqueous solution, under the environment atmosphere of 90℃, synthesis one dimensional ZnO nanorods by different concentration and different grown time, in order to investigate the optical property influences of ZnO thin film electroluminescence device of one dimensional ZnO nanorods.
In this experiment, three different concentration of aqueous solution be used by 0.01M 0.02M and 0.03M, Individual growth time is 30min 60min 90min and 120min to investigate the effect of sizes of nanorods optical property influences and find out optimization parameters,
from the experiment data, the device of 0.03M aqueous solution with growth time is 60min have better luminescence intensity. With the growth time is longer, interstitial Zn and oxygen vacancies ratio will be increase substantially and visible wavelength intensity will more and more, main-wavelength will shift gradually towards visible wavelength.
目錄
摘要 I
Abstract II
目次 Ⅲ
表目次 Ⅵ
圖目次 VII
Chapter 1 緒論 1
1-1 發光二極體種類 2
1-2 直、交流薄膜電激發光元件特點 3
1-2.1直、交流薄膜電激發光元件的優缺點 3
1-2.2氧化鋅薄膜電激發光元件製程展望 3
1-3 研究動機與目的 4
1-4 論文架構 4
Chapter 2 理論分析與文獻回顧 5
2-1 奈米材料發展與簡介 5
2-1.1尺寸效應 6
2-1.2表面效應 6
2-1.3庫倫堵塞效應 7
2-1.4量子穿隧效應 7
2-1.5量子限域效應 7
2-2 電激發光元件結構與發光原理 8
2-3 電激發光元件各層材料的擇優選擇 9
2-3.1基板 9
2-3.2絕緣層 9
2-3.3螢光層 10
2-3.4透明導電薄膜 11
2-3.5金屬電極 12
2-4 電激發光機制 12
2-4.1直接撞擊激發 12
2-4.2能量轉移原理 12
2-5 發光層薄膜 13
2-5.1 發光材料介紹 13
2-5.2 氧化鋅薄膜結構 13
2-5.3 氧化鋅薄膜發光機制 14
2-5.3.1 紫外光(Ultraviolet, UV) 14
2-5.3.2 綠光(Green) 14
2-5.3.3 黃橙光(Yellow-orange) 15
2-6 各類氧化鋅奈米結構合成方法介紹 15
2-7 低溫水溶液合成法成長一維氧化鋅奈米柱 16
2-8 磁控濺鍍與電漿原理 17
2-9 微影製程介紹 17
2-10薄膜成型機制 18
Chapter 3 實驗方法與步驟 19
3-1 矽基板清洗 19
3-2 高溫硼擴散 19
3-3 氧化鋅奈米柱電激發光元件製備 20
3-3.1 濺鍍步驟及參數 20
3-3.2 低溫水溶液合成法成長氧化鋅奈米柱 20
3-3.3 熱退火處理 21
3-3.4 光罩之設計 21
3-3.5 黃光微影製程 21
3-3.6 背電極沉積 21
3-4 特性量測 22
3-4.1 掃描式電子顯微鏡(Hitachi S4800) 22
3-4.2 X-ray繞射分析儀(BRUKER, D2 PHASER) 22
3-4.3 原子力顯微鏡((NTMDT P47H)表面分析 23
3-4.4 光激發光(He-Cd Laser 325nm)特性分析 23
3-4.5 電激發光(Spectrometer BRC111A)特性分析 24
3-4.6 電壓電流曲線(凱思隆-電壓電流量測追蹤曲線儀)特性分析 24
Chapter 4 實驗結果與分析 25
4-1 掃描式電子顯微鏡表面型態分析(SEM) 25
4-2 X-ray繞射分析儀(XRD) 26
4-3原子力顯微鏡表面型態分析(AFM) 26
4-4光激發螢光光譜(PL) 27
4-5電激發光光譜(EL) 28
4-6 CIE色坐標 28
4-7 I-V特性曲線 29
4-8電激發光元件施加偏壓後實際點亮之照片 29
Chapter 5 結論 31
Reference 32

表目錄
Table 2-1 二氧化矽與三氧化二鋁介電係數與介電崩潰電場 41
Table 2-2 氧化鋅基本特性簡介 42
Table 3-1 不同材料濺鍍參數 55
Table 3-2 各種顯微鏡比較 55

圖目錄
Fig. 1-1不同驅動電壓電激發光元件種類圖 41
Fig. 2-1不同尺寸氧化鋅奈米柱光激發光光譜,a、b、c 直徑分別為 100nm、50nm、25nm之奈米柱 43
Fig. 2-2 (a)金屬與半導體能量-能階密度關係圖(b)不同維度之能階密度-能量函數關係圖 43
Fig. 2-3 單絕緣層直流電激發光元件架構圖(A)基板(B)絕緣層(C)發光層(D)上電極(E)背電極 44
Fig. 2-4 雙絕緣層交流電激發光元件架構圖 44
Fig. 2-5單絕緣層電激發光元件元件內部等效電路 45
Fig. 2-6光波長與光子關係圖 45
Fig. 2-7 雙絕緣薄膜電激發光元件能帶圖 46
Fig. 2-8 氧化鋅六方纖鋅礦結構 46
Fig. 2-9 E. G. Bylander 等人所提出氧化鋅缺陷能階圖 47
Fig. 2-10 B. Lin 等人所提出氧化鋅缺陷能階圖 47
Fig. 2-11 Zheng-Wu Jin 等人文獻中氧化鋅摻銅的陰極發光光譜圖 48
Fig. 2-12異質成核示意圖 48
Fig. 2-13氧化鋅結晶成長結構 49
Fig. 2-14一維氧化鋅奈米柱成長過程示意圖 49
Fig. 2-15不同 PH 濃度成長氧化鋅奈米尺寸示意圖 50
Fig. 2-16濺鍍原理示意圖 50
Fig. 2-17薄膜成長過程(a)粒子成核(b)晶粒成長(c)晶粒聚結(d)縫隙填補(e)薄膜成長 51
Fig. 2-18濺鍍法沉積薄膜其不同結構區域俯視圖 51
Fig. 2-19濺鍍法沉積薄膜其不同結構區域橫截面圖 52
Fig. 3-1 氧化鋅奈米柱電激發光元件製備流程圖 53
Fig. 3-2 10mm*10mm 電極光罩設計圖 54
Fig. 3-3 布拉格晶格原理 55
Fig. 3-4 電子傳輸轉移圖 55
Fig. 3-5 光激發光量測系統架構 56
Fig. 3-6 電激發光量測系統架構 56
Fig. 4-1 濃度0.01M成長30分鐘(a)倍率30K(b)倍率80K 57
Fig. 4-2 濃度0.01M成長60分鐘(a)倍率30K(b)倍率80K 58
Fig. 4-3 濃度0.01M成長90分鐘(a)倍率30K(b)倍率80K 58
Fig. 4-4 濃度0.01M成長120分鐘(a)倍率30K(b)倍率80K 59
Fig. 4-5 濃度0.02M成長30分鐘(a)倍率30K(b)倍率80K 60
Fig. 4-6 濃度0.02M成長60分鐘(a)倍率30K(b)倍率80K 60
Fig. 4-7 濃度0.02M成長90分鐘(a)倍率30K(b)倍率80K 61
Fig. 4-8 濃度0.02M成長120分鐘(a)倍率30K(b)倍率80K 62
Fig. 4-9 濃度0.03M成長30分鐘(a)倍率30K(b)倍率80K 62
Fig. 4-10濃度0.03M成長60分鐘(a)倍率30K(b)倍率80K 63
Fig. 4-11濃度0.03M成長90分鐘(a)倍率30K(b)倍率80K 64
Fig. 4-12濃度0.03M成長120分鐘(a)倍率30K(b)倍率80K 64
Fig. 4-13 Al2O3薄膜XRD分析圖 65
Fig. 4-14 低溫水溶液濃度0.01M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘 XRD分析以及(e)各繞射峰值強度比較 66
Fig. 4-15 低溫水溶液濃度0.02M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘 XRD分析以及(e)各繞射峰值強度比較 68
Fig. 4-16 低溫水溶液濃度0.03M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120 分鐘 XRD分析以及(e)各繞射峰值強度比較 70
Fig. 4-17 低溫水溶液濃度為0.01M成長30分鐘之AFM表面粗糙度分析 71
Fig. 4-18 低溫水溶液濃度為0.01M成長60分鐘之AFM表面粗糙度分析 72
Fig. 4-19 低溫水溶液濃度為0.01M成長90分鐘之AFM表面粗糙度分析 73
Fig. 4-20 低溫水溶液濃度為0.01M成長120分鐘之AFM表面粗糙度分析 74
Fig. 4-21 低溫水溶液濃度為0.02M成長30分鐘之AFM表面粗糙度分析 75
Fig. 4-22 低溫水溶液濃度為0.02M成長60分鐘之AFM表面粗糙度分析 76
Fig. 4-23 低溫水溶液濃度為0.02M成長90分鐘之AFM表面粗糙度分析 77
Fig. 4-24 低溫水溶液濃度為0.02M成長120分鐘之AFM表面粗糙度分析 78
Fig. 4-25 低溫水溶液濃度為0.03M成長30分鐘之AFM表面粗糙度分析 79
Fig. 4-26 低溫水溶液濃度為0.03M成長60分鐘之AFM表面粗糙度分析 80
Fig. 4-27 低溫水溶液濃度為0.03M成長90分鐘之AFM表面粗糙度分析 81
Fig. 4-28 低溫水溶液濃度為0.03M成長120分鐘之AFM表面粗糙度分析 82
Fig. 4-29 低溫水溶液濃度為0.01M、0.02M及0.03M成長30 ~ 120分鐘之 AFM Rrms趨勢圖 82
Fig. 4-30 低溫水溶液濃度為0.01M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之PL分析 84
Fig. 4-31 低溫水溶液濃度為0.02M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之PL分析 86
Fig. 4-32 低溫水溶液濃度為0.03M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之PL分析 87
Fig. 4-33 低溫水溶液濃度為0.01M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之EL量測 89
Fig. 4-34 低溫水溶液濃度為0.02M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之EL量測 91
Fig. 4-35 低溫水溶液濃度為0.03M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘(e)30~120分鐘全部之EL量測 92
Fig. 4-36 低溫水溶液濃度為0.01M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘CIE色座標 94
Fig. 4-37 低溫水溶液濃度為0.02M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘CIE色座標 95
Fig. 4-38 低溫水溶液濃度為0.03M成長(a)30分鐘(b)60分鐘(c)90分鐘(d)120分鐘CIE色座標 97
Fig. 4-39 低溫水溶液濃度為0.03M成長30~120分鐘之氧化鋅奈米柱電激發光元件電壓-電流特性曲線 97
Fig. 4-40 低溫水溶液濃度為0.01M成長30分鐘之電激發光元件施加15V電壓實際點亮照片 98
Fig. 4-41 低溫水溶液濃度為0.01M成長60分鐘之電激發光元件施加15V電壓實際點亮照片 98
Fig. 4-42 低溫水溶液濃度為0.01M成長90分鐘之電激發光元件施加15V電壓實際點亮照片 99
Fig. 4-43 低溫水溶液濃度為0.01M成長120分鐘之電激發光元件施加15V電壓實際點亮照片 99
Fig. 4-44 低溫水溶液濃度為0.02M成長30分鐘之電激發光元件施加15V電壓實際點亮照片 100
Fig. 4-45 低溫水溶液濃度為0.02M成長60分鐘之電激發光元件施加15V電壓實際點亮照片 100
Fig. 4-46低溫水溶液濃度為0.02M成長90分鐘之電激發光元件施加15V電壓實際點亮照片 101
Fig. 4-47 低溫水溶液濃度為0.02M成長120分鐘之電激發光元件施加15V電壓實際點亮照片 101
Fig. 4-48低溫水溶液濃度為0.03M成長30分鐘之電激發光元件施加15V電壓實際點亮照片 102
Fig. 4-49低溫水溶液濃度為0.03M成長60分鐘之電激發光元件施加15V電壓實際點亮照片 102
Fig. 4-50低溫水溶液濃度為0.03M成長90分鐘之電激發光元件施加15V電壓實際點亮照片 103
Fig. 4-51低溫水溶液濃度為0.03M成長120分鐘之電激發光元件施加15V電壓實際點亮照片 103
[1]彭成基,"低溫水溶液法合成氧化鋅奈米柱之發光二極體",國立台灣師範大學光電科技研究所,(2008)
[2]Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim and Seong-Ju Park, "ZnO thin films and light-emitting diodes", J. Phys. D: Appl. Phys. 40 (2007) R387–R412.
[3]Min-Yung Ke1, Tzu-Chun Lu, Sheng-Chieh Yang, Cheng-Pin Chen, Yun-Wei Cheng1,Liang-Yi Chen, Cheng-Ying Chen, Jr-Hau He1,and JianJang Huang, "UV light emission from GZO/ZnO/GaN heterojunction diodes with carrier confinement layers", 2009 Optical Society of America OCIS codes: (230.3670) .
[4]T.Inoguchi, M.Takede, Y.Nakata, M.Yoshida, Digest of 1974 SID International Symposium, (1974) 84.
[5]黑士銘,"氧化鋅長波長電激發光元件之研究",國立台灣海洋大學電機工程學系碩士學位論文,民國101年(2012)
[6]郭東昊、何政宇、方健峰、周鈺承、陳葦純、林佳陽,"ZnO六方奈米柱的成長微觀動力學探討與光電應用之研究研究成果報告(精簡版)",行政院國家科學委員會專題研究計畫成果果告,民國100年
[7]Lin Cui, Hua-Yu Zhang, Gui-Gen Wang, Fang-Xu Yang, Xu-Ping Kuang, Rui Sun, Jie-Cai Han,"Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering", Applied surface Science (2012), vol.258, pp2479-pp2485.
[8]Michael H.Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, Peidong Yang,"Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport", Adv.Mater, 2001, Vol.13, No.2.
[9]Maogang Gong,"Progress of the Study of Self-Assembly 1D Nano-Functional Materials", Advances in Condensed Matter Physics, 2013, Vol.2, pp51-pp67.
[10]R.Shabannia, "Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time", Progress in Natural Science : Materials International, 2015, vol.25, pp95-pp100.
[11]Haoning Wang, Hao Long, Xiaoming Mo, Zhao Chen, Songzhan Li, Huihui Huang, Yuping Liu, Guojia Fang, "Near white electroluminescence from self-supporting ZnO nanocone array based heterojunction light-emitting diodes", Mater.Res.Express, 2015, vol.2.
[12]Avijit Ghosh, R.N.P.Choudhary, "Structural evolution and visible photoluminescence of Zn-ZnO nanophosphor", phys.Status Solidi A, 2009, Vol.206, pp535-pp539.
[13]D.Polsongkram, P.Chamninok, S.Pukird, L.Chow, O.Lupan, G.Chai, H.Khallaf, S.Park, A.Schulte, "Effect of synthesis conditions on the grown of ZnO nanorods via hydrothermal method", Physica B, 2008, Vol.403, pp3713-pp3717.
[14]Lori E. Greene, Matt Law, Dawud H.Tan, Max Montano, Josh Goldberger, Gabor Somorjai, Peidong Yang, "General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds", NANO LETTERS, 2005, Vol.5, pp1231-pp1236.
[15]Young Sook Bae, Dong Chan Kim, Cheol Hyoun Ahn, Jae Hyun Kim, Hyung Koun Cho, "Grown of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures", Surf.Interface Anal, 2010, Vol.42, pp978-pp982.
[16]Yefan Chen, D.M.Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, Takafumi Yao,"Plasma assisted molecular beam epitaxy of ZnO on C-plane sapphire: Growth and Characterization", Appl.Phys, 1998, vol.84, pp3912-pp3918.
[17]Jaejin Song, Sangwoo Lim,"Effect of Seed Layer on the Growth of ZnO Nanorods", J.Phys.Chem.C, 2007, vol.111, pp596-pp600.
[18]Ching-Ting Lee, Yung-Hao Lin, Li-Wen Lai, Li-Ren Lou, "Mechanism Investigation of p-i-n ZnO-Based Light-Emitting Diodes", IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, vol.22, pp30-pp32.
[19]Min Guo, Peng Diao, Shengmin Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays : Dependence of morphology and alignment ordering upon preparing conditions", Journal of Solid State Chemistry, 2005, vol.178, pp1864-pp1873.
[20]闞保濤、汪鑫、葉春麗、呂建國、葉志鎮,"高度均一ZnO纳米梭的水热法制备及其性能", 發光學報, 2011, vol.32, pp1205-pp1209
[21]J.B.Cui, C.P.Daghlian, U.J.Gibson, R.Pusche, P.Geithner,L.Ley, "Low-temperature grown and field emission of ZnO nanowire arrays", J.Appl.Phys, 2005, vol.97.
[22]Shuang Ma, Guojia Fang, Chun Li, Su Sheng, Linggang Fang, Qiang Fu, Xing-Zhong Zhao,"Controllable Synthesis of Vertically Aligned ZnO Nanorod Arrays in Aqueous Solution", J.Nanosci.Nanotechnol, 2006, vol.6, pp2062-pp2066.
[23]S.J.Jiao, Y.M.Lu, D.Z.Shen, Z.Z.Zhang, B.H.Li, J.Y.Zhang,B.Yao, Y.C.Liu, X.W.Fan,"Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode", phys.stat.sol.C, 2006, vol.3, pp972-pp975.
[24]Lionel Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions", Adv.Mater, 2003, vol.15.
[25]X.W.Sun, J.Z.Huang, J.X.Wang, Z.Xu,"A ZnO Nanorod Inorganic/Organic Heterostructure Light-Emitting Diode Emitting at 342nm", NANO LETTERS, 2008, vol.8, pp1219-pp1223.
[26]Yanhong Tong, Yichun Liu, Lin Dong, Dongxu Zhao, Jiying Zhang, Youming Lu, Dezhen Shen, Xiwu Fan, "Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique", J.phys.Chem.B, 2006, vol.110, pp20263-pp20267.
[27]Yong-Seok Choi, Jang-Won Kang, Dae-Kue Hwang, Seong-Ju Park, "Recent Advances in ZnO-Based Light-Emitting Diodes"
, IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, vol.57.
[28]Yen-Ju Wu, Yen-Shuo Liu, Chih-Yi Hsieh, Po-Ming Lee, Yu-Shan Wei, You-Hsien Chang, Kun-Yu Lai, Cheng-Yi Liu, "Light Extraction Enhancement of Vertical LED by Growing ZnO Nano-Rods on Tips of Pyramids", IEEE, 2013, vol.25, pp1041-pp1135.
[29]A. D. Mason, T. F. Roberts, J. F. Conley, D. T. Price, D. D. J. Allman, M. S. McGuire, "Investigation of growth parameter influence on hydrothermally grown ZnO nanowires using a research grade microwave", Semiconductor Device Research Symposium, 2009. ISDRS '09. International, College Park, MD, 2009, pp1-pp2.
[30]M.K.Wu, Y.T.Shih, W.C.Li, H.C.Chen, M.J.Chen, H.Kuan, J.R.Yang, M.Shiojiri, "Ultraviolet Electroluminescence From n-ZnO-SiO2-ZnO Nanocomposite/p-GaN Heterojunction Light-Emitting Diodes at Forward and Reverse Bias", IEEE, 2008, vol.20, pp1772-pp1774.
[31]Jae-hoon Choi, Xueqiu You, Chul Kim, Jungil Park, James Jungho Pak, "Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Mwthod", Journal of Electrical Engineering & Technology, 2010, vol.5, pp640-pp645.
[32]A. B. Djurisic, Y. F. Hsu, Y. Y. Xi, A. M. C. Ng, K. H. Tam, W. K. Chant, "ZnO nanorod heterojunctions and LEDs", 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, 2008, pp182-pp185.
[33]Ping Wu, Jie Zhang, Jianguo Lu, Xifeng Li, Chuanjia Wu, Rujie Sun, Lisha Feng, Qingjun Jiang, Bin Lu, Xinhua Pan and Zhizhen Ye "Instability Induced by Ultraviolet Light in ZnO Thin-Film Transistors", IEEE, 2014, pp1431-pp1435.
[34]Gyu-Chul Yi, Chunrui Wang, WonIIPark, "ZnO nanorods : synthesis characterization and applications", Semicond.Sci.Technol, 2005, vol.20, pp22-pp34.
[35]Xiao-Mei Zhang, Ming-Yen Lu, Yue Zhang, Lih-J.Chen, Zhong Lin Wang, "Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film", Adv.Mater, 2009, vol.21, pp2767-pp2770.
[36]B.E.Sernelius, K.F.Berggren, Z.C.Jin, I.Hamberg, C.G.Granqvist, "Band-gap tailoring of ZnO by means of heavy Al doping", PHYSICAL REVIEW B, vol.37, pp10244-pp10248.
[37]李明吉、王秀鋒、李紅姬、昊小國、曲長慶、楊保和,"單晶MgO奈米帶的生長特性和發光性能", 無機化學學報, vol.29, pp1199-pp1205
[38]Tae-Bong Hur, Gwang Soo Jeen, Yoon-Hwae Hwang, Hyung-Kook Kim, "Photoluminescence of polycrystalline ZnO under different annealing conditions", J.Appl.Phys, 2003, vol.94, pp5787-pp5790.
[39]K.Vanheusden, W.L.Warren, C.H.Seager, D.R. Tallant, J.A.Voigt, B.E.Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J.Appl.Phys, 1996, vol.79, pp7983-pp7990.
[40]E.G.Bylander, "Surface effects on the low-energy cathodoluminescence of zinc oxide", J.Appl.Phys, 1978, vol.49, pp1188-pp1195.
[41]G.Kenanakis, D.Vernardou, E.Koudoumas, N.Katsarakis, "Grown of c-axis oriented ZnO nanowires from aqueous solution : The decisive role of a seed layer for controlling the wires' diameter", J.Crystal Growth, 2009, vol.311, pp4799-pp4804.
[42]Shu-Yi Liu, Jia-Hong Wu, Shu-Ti Li, Tao Chen, Shao-Ren Deng, Yu-Long Jiang, Guo-Ping Ru, Xin-Ping Qu, "The EL properties of well-aligned n-ZnO nanorods / p-GaN structure", IEEE, 2010, pp1244-pp1246.
[43]Jun-Dar Hwang, M.J.Lai, H.Z.Chen, M.C.Kao, "Au-Mediated Surface Plasmon Enhanced Ultraviolet Response of p-Si/n-ZnO Nanorods Photodetectors", IEEE, vol.26, pp1023-pp1026.
[44]D.Li, Y.H.Leung, Z.T.Liu, M.H.Xie, S.L.Shi, S.J.Xu, W.K.Chan, "Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods", Appl.Phys.Lett, 2004, vol.85, pp1601-pp1603.
[45]Wei-Cheng Lien, Dung-Sheng Tsai, Shu-Hsien Chiu, Debbie G.Senesky, Roya Maboudian, Albert P.Pisano, Jr-Hau He, "Low-Temperature Ion Beam-Assisted SiC Thin Films With Antireflective ZnO Nanorod Arrays for High-Temperature Photodetection", IEEE, 2011, vol.32, pp1564-pp1566.
[46]Chun-Yu Lee, Yau-Te Haung, Wei-Fang Su, Ching-Fuh Lin, "Electroluminescence from ZnO nanoparticles/organic nanocomposites", Appl.Phys.Lett, 2006, vol.89.
[47]Oleg Lupan, Guangyu Chai, Lee Chow, "Novel hydrogen gas sensor based on single ZnO nanorod", Microelectronic Engineering, 2008, vol.85, pp2220-pp2225.
[48]Young Jung Kim, Huamei Shang, Guozhong Cao, "Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation", Journal of Sol-Gel Science and Technology, 2006, vol.38, pp79-pp84.
[49]S.A.M. Lima, M. Cremona, M.R. Davolos, C. Legnani, W.G. Quirino, " Electroluminescence of zinc oxide thin films prepared via polymeric precursor and via sol gel methods", Thin Solid Films, 2007, vol.516, pp165-pp169.
[50]Ching-Shun Ku, Jheng-Ming Huang,Ching-Yuan Cheng, Chih-Ming Lin, Hsin-Yi Lee, "Annealing effect on the optical response and interdiffusion of nn-ZnO/p-Si (111) heterojunction grown by atomic layer deposition", Appl.Phys.Lett, 2010, vol.97, 181915.
[51]Peiliang Chen, Xiangyang Ma, Deren Yang, "Ultraviolet electroluminescence from ZnO p Si heterojunctions", JOURNAL OF APPLIED PHYSICS, 2007, vol.101, 053103.
[52]J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, Y. D. Zheng, "Electroluminescent and transport mechanisms of n ZnO p Si heterojunctions", APPLIED PHYSICS LETTERS, 2006, vol.88, 182112.
[53]D. C. Look, B. Claflin, Ya. I. Alivov, S. J. Park, "The future of ZnO light emitters", phys. stat. sol. (a), 2004, vol.201, pp2203–pp2212.
[54]S. Harako, S. Yokoyama, K. Ide, X. Zhao, S. Komoro, "Visible and infrared electroluminescence from an Erdoped nZnOpSi light emitting diode", phys. stat. sol. (a), 2008, vol.205, pp9–pp22.
[55]J. L. Zhao, X. W. Sun, S. T. Tan, G. Q. Lo, D. L. Kwong, Z. H. Cen, "Realization of n - Zn 1 x Mg x O i - Zn O Si O x n + - Si heterostructured n - i - n lightemitting diodes by low-cost ultrasonic spray pyrolysis", Applied Physics Letters, 2007, vol.91, 263501.
[56]蔡淑卿, "ZnO 與ZnS 摻錳螢光薄膜之發光性質研究", 國立成功大學材料科學及工程研究所碩士論文, (2004)
[57]左坤民, "氧化鋅奈米柱電致發光及氧化鋅奈米柱金半金接面光感測器整合及應用之研究", 國立台灣海洋大學電機工程學系碩士學位論文, 民國101年, (2012)
[58]吳書漢, "Ⅱ-Ⅵ族量子點敏化型氧化鋅奈米柱光陽極之界面性質探討", 國立台灣科技大學化學工程系碩士學位論文, 民國98年, (2009)
[59]M. H. Huang, Y. Wu, H. Feick, N.Tran, P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater, 2001, vol.13, pp113-pp116.
[60]Kubo, R, "Electronic Properties of Metallic Fine Particles. I.", J.Phys.Soc.Jpn, 1962, vol.17, pp975-pp986.
[61]Kawabata,A, Kubo,R, "Electronic Properties of Metallic Fine Particles. II. Plasma Resonance Absorption", J.Phys.Soc.Jpn, 1966, vol.21, pp1765-pp1772.
[62]R. Rosseti, S. Nakahara, L. E. Brus, "uantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution", J. Chem. Phys, 1983, vol.79, pp1086-pp1088.
[63]A. P. Alivisatos, "Perspectives on the Physical Chemistry of Semiconductor Nanocrystals", J. Phys, Chem, 1996, vol.100, pp13226-pp13239.
[64]A. P. Alivisatos, "semiconductor Clusters, Nanocrystals, and Quantum Dots ", Science, 1996, vol.271, pp933-pp937.
[65]Y. Wang, N. Herron, "Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties", J. Phys. Chem, 1991, vol.95, pp525-pp532.
[66]O. Madelung, Landolt-Bornstein, "Numerical Data and Functional Relationship in Science and Technology", Springer, 1998, Vol.Ⅲ-17:semiconductors.
[67]W. Tang, D.C. Cameron, "Electroluminescent zinc sulphide devices produced by sol-gel processing", Thin Solid Films, 1996, vol.280, pp221-pp226.
[68]J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, Paul K. Chu, "Electroluminescence behavior of ZnO/Si heterojunctions: Energy band alignment and interfacial microstructure", J. Appl. Phys, 2010, vol.107, 083701.
[69]E. I. Gorokhova, G. V. Anan’eva, V. A. Demidenko, "Optical, luminescence, and scintillation properties of ZnO and ZnO:Ga ceramics", J. Opt. Technol, 2008, vol.75, pp741-pp746.
[70]曾上乘, "氧化鋅和氧化鋅鎵薄膜之電激發光元件之研究", 國立台灣海洋大學電機工程學系碩士學位論文, 民國100年(2011)
[71]A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength", App. Phys. Lett, 2006, Vol.88, 103107.
[72]I. Hamberg, C. G. Granqvist, "Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows", J. Appl. Phys, 1986, Vol.60, R123.
[73]Minami T, "Transparent conducting oxide semiconductors for transparent electrodes", Semicond. Sci. Technol, 2005, vol.20, pp.35.
[74]P. Thilakan, J. Kumar, "Studies on the preferred orientation changes and its influenced properties on ITO thin films", Vacuum, 1997, Vol.48, pp.463-pp466.
[75]Cheol Hyoun Ahn,Won Suk Han, Bo Hyun Kong, Hyung Koun Cho, "Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior ", Nanotechnology, 2009, vol.20, 015601.
[76]Yoshimasa A. Ono, "Electroluminescent displays", World Scientific Publishing Company, 1995.
[77]Mi Kyung Choi, Won Suk Han, Young Yi Kim, Bo Hyun Kong, Hyung Koun Cho, Jae Hyun Kim, Hong-Seok Seo, Kang-Pil Kim, Jung-Ho Lee, "n-ZnO:Ga/i-ZnO/p-Si heterojunction light emitting diodes fabricated on patterned Si substrates", J Mater Sci: Mater Electron, 2009, vol.20, pp1214–pp1218.
[78]Xuhu Yua, Jin Ma, Feng Ji, Yuheng Wang, Xijian Zhang, Chuanfu Cheng, Honglei Ma, "Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature", Journal of Crystal Growth, 2005, vol.274, pp474–pp479.
[79]V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimova, "Structural and morphological properties of ZnO:Ga thin films",Thin Solid Films, 2006, vol.515, pp472 – pp476.
[80]T. Makino, Y. Segawa, "Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga", Appl. Phys. Lett, 2004, Vol. 85, pp759-pp761.
[81]D. P. Norton, Y. W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, "ZnO: growth, dopong & processing", Meterials Today, 2004, Vol.7, pp34-pp40.
[82]Zheng Yang, Sheng Chu, Winnie V. Chen1, Lin Li, Jieying Kong, Jingjian Ren, Paul K. L. Yu, Jianlin Liu, "ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy ", Applied Physics Express, 2010, vol.3, 032101.
[83]Bin-Zhong Dong, Guo-Jia Fang, Jian-Feng Wang, Wen-Jie Guan, Xing-Zhong Zhao, "Effect of thickness on structural, electrical and optical properties of ZnO: Al films deposited by pulsed laser deposition", J. Appl. Phys, 2007, Vol. 101, 033713.
[84]G.Xiong, K.B.Ucer, R.t.Williams, J.Lee,D.Bhattacharyya, J.Metson, P.Evans,
"Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal", J.Appl. Phys, 2005, Vol.97, 043528.
[85]Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen, "Structural and optical properties of ZnO films grown on the AAO templates", Mater. Lett, 2003, vol.57, pp.4187-pp4190.
[86]B.J. Jin, S. Im, S.Y. Lee, "Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition", Thin Solid Films, 2000, vol.366 pp107-pp110.
[87]Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, H.W. White, "Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition", Appl. Phys. Lett, 2000, vol.88, pp201-pp204.
[88]D. H. Zhang, D. E. Brodie, "Crystallite orientation and the related photoresponse of hexagonal ZnO films deposited by r.f. sputtering", Thin Solid Films, 1994, Vol.251, pp151-pp156.
[89]D. H. Zhang, "Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering", J. Phys. D, 1995, Vol.25, pp1273-pp1277.
[90]H.Y.Kirn, J.H.Kirn, M.O.Park, S.Im, "Photoelectric, stoichiometric and structural properties of n-ZnO film on p-Si", Thin Solid Films, 2001, Vol.398, pp93-pp98.
[91]H. Y. Kim, J. H. Kim, Y. J. Kim, K. H. Chae, C. N. Whang, J. H. Song, S. Im, "Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures", Opt. Mater, 2001, Vol.17, pp141-pp144.
[92]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, "ZnO Schottky ultraviolet photodetectors", J. Cryst. Growth, 2001, Vol.225, pp110-pp113.
[93]S. A. Studenikin, Nickolay Golego, Michael Cocivera, "Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films", J. Appl. Phys, 2000, Vol.87, pp2413-pp2421.
[94]B. L. ZHU, X. H.SUN, S. S. GUO, X. Z. ZHAO, J. WU, R. WU, J. LIU, "Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition", Jpn. J. Appl. Phys, 2006, Vol.45, pp7860-pp7865.
[95]S.N. Bai, T.Y. Tseng, "Influence of sintering temperature on electrical properties of ZnO varistors", J. Appl. Phys, 1993, vol.74, pp695-pp703.
[96]W. Water, S. Y. Chu, "Physical and structural properties of ZnO sputtered films", Mater. Lett, 2002, vol. 55, pp67-pp72.
[97]Sunglae Cho, Jing Ma, Yunki Kim, Yi Sun, George K. L. Wong, John B.
Ketterson, "Photoluminescence and ultraviolet lasing of polycrystalline ZnO
thin films prepared by the oxidation of the metallic Zn", Applied Physics Letters,
1999, Vol 75, pp2761-pp2763.
[98]B.X. Lin, Z.X. Fu, Y.B. Jia, "Green luminescent center in undoped zinc oxide
films deposited on silicon substrates", Appl.Phys.Lett, 2001, vol.79, pp943-pp945.
[99]Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.T. Hao, "Violet luminescence emitted from ZnO films deposited on Si substrate by RF magnetron supttering", Applied Surface Science, 2002, Vol.201, pp.123-128.
[100]K.Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt,"Mechanisms
behind green photo luminescence in ZnO phosphor powders", J. Appl.Phys, 1996, Vol.79, pp7983-pp7990.
[101]W. Li, D. Mao, F. Zhang, X.Wang, X. Liu, S. Zou, Y.Zhu, Q. Li, J.Xu, "Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing", Nucl. Instr. and Meth. B, 2000, Vol.169, pp59-pp63.
[102]E. G. Bylander, "Surface effects on the low-energy cathodoluminescence of zinc oxide", J. Appl. Phys, 1978, Vol.49, pp1188-pp1195.
[103]B. Lin, Z. Fu, Y. Jia and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions", J. Electrochem. Soc, 2001,
Vol. 148, ppG110-ppG113.
[104]Zheng-Wu Jin, Y.-Z. Yoo, T. Sekiguchi, T. Chikyow, "Blue and ultraviolet cathodoluminescence from Mn-doped epitaxial ZnO thin films", APPLIED PHYSICS LETTERS, 2003, vol.83, pp39-pp41.
[105]Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, G.W. Yang, "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement", Chem. Phys. Lett, 2005, vol.252, pp248–pp251.
[106]洪振瑜,"氧化鋅奈米柱結構變化對MSM光感測器使用波長影響之研究",國 立臺灣海洋大學電機工程學系碩士學位論文,民國104年(2015)
[107] J. Song, S. Lim, "Effect of seed layer on the growth of ZnO nanorods", Journal of Physical Chemistry C, 2007, vol.111, pp596-pp600.
[108] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", J. Vac. Sci. Tech, 1974,vol.11, pp666-pp670.
[109] J. A. Thornton, "Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings", J.Vac.Sci.Tech 1975, vol.12, pp.830-835.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top