跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏興
研究生(外文):Chen, Bo-Sing
論文名稱:基於巨量多輸入多輸出系統之快速分群符元偵測法與硬體設計
論文名稱(外文):Fast Group Symbol Detection Schemes and Hardware Design for Massive MIMOs
指導教授:盧晃瑩嚴茂旭
指導教授(外文):Lu, Hoang-YangYen, Mao-Hsu
口試委員:張順雄方文賢洪賢昇盧晃瑩嚴茂旭
口試委員(外文):Chang, Shun-HsyungFang, Wen-HsienHung, Hsien-SengLu, Hoang-YangYen, Mao-Hsu
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:垂直貝爾分層空時偵測器空時方塊碼巨量多輸入多輸出系統最小均方差硬體實現
外文關鍵詞:V-BLASTTBCmassive MIMOMMSEhardware implementation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們先針對巨量多輸入多輸出系統提出兩個快速分群偵測法,首先我們先決定每一群的大小G(例如,G=2或G=3),然後進行一群一群的遞迴運算,得到每一群的最小均方差(Minimummeansquareerror,MMSE)偵測器以做為符元偵測使用,且採用遞迴的方式來計算出輔助矩陣作為計算MMSE偵測器之協助,如此可避免直接運算MMSE偵測器,進而降低運算複雜度。有了這些輔助矩陣後,每一群的估測符元即可透過遞迴運算一群一群的估測出來。不僅如此,為了同時接收到空間多樣性與空間多工增益,我們將上述兩個演算法進行延伸,且提出對應的巨量G-STBC多輸入多輸出系統之快速偵測法。最後透過MATLAB模擬與效能分析證實了快速偵測法的效能確實可以十分接近傳統垂直貝爾分層空時偵測器,並且能降低大量的運算複雜度。

為了測試硬體實現,我們更將其中一個名為FGD-B的快速偵測法進行硬體設計。硬體設計的過程中,我們先在巨量多輸入多輸出系統中挑選傳送天線M=24與接收天線N=100,且採用Verilog硬體描述語言進行編碼。其中硬體的模組包含串列輸入並列輸出(Serial-In/Parallel-Out,SIPO)移位暫存器、運算單元與控制器,且在運算單元中,我們僅使用到1個除法器與2個乘法器。最後硬體模擬的結果確實和MATLAB的結果十分相近,且和現存的方法進行比較,我們所提出的FGD-B架構亦較為簡單且可行。
In the thesis we present two fast group detection schemes for massive MIMO systems. First, a number G, (e.g., G = 2 or G = 3) is chosen as the size of each group. Then, the proposed schemes recursively compute the MMSE detectors group by group to facilitate symbol detection. Specifically, to avoid the huge complexity required to directly compute the MMSE detectors, the schemes recursively find the corresponding assistant matrices to help determine the groups and calculate the MMSE detectors. As a result, the transmitted symbols can be recursively estimated group by group. Furthermore, to concurrently receive the spatial diversity and spatial multiplexing gains, we also extend the two above schemes and propose a corresponding fast detection method for massive G-STBC MIMO systems. Our MATLAB simulation results and complexity analysis show that the proposed schemes can achieve a performance close to that of the conventional V-BLAST algorithm with a significant saving in computational complexity.
To test the physical implementation, we further carry out the hardware design of the proposed schemes. For this, one of the above proposed schemes, namely FGD-B, is coded with Verilog HDL(Hardware Description Language) for the massive MIMO system with M = 24 transmit antennas and N = 100 receive antennas. The hardware modules we designed include SIPO (Serial-In/Parallel-Out) shift registers, a computing unit and a controller. Specially, the hardware computing unit only contains one Divider and two Multiplier. Finally, the hardware simulation results achieve almost the same as the above MATLAB's. In addition, compared to the existing method, the proposed hardware architecture for FGD-B is simple and feasible.
1 緒論
1.1 引言
1.2 研究動機與目的
1.3 內容章節概述
2 背景知識
2.1 巨量多輸入多輸出系統模型
2.2 現有的MIMO偵測方法
2.2.1 最大相似性
2.2.2 強制到零
2.2.3 最小均方差
2.2.4 垂直貝爾分層空時偵測器
2.2.5 空時方塊碼
2.3 實現MIMO系統的低成本MMSE-SIC偵測器:演算法和硬體
2.4 發展工具
2.5 結語
3 快速分群符元偵測法
3.1 快速分群符元偵測法-A
3.2 快速分群符元偵測法-B
3.3 效能模擬與複雜度分析
3.4 結語
4 巨量G-STBC的快速符元偵測
4.1 巨量G-STBC MIMO系統模型
4.2 FSD-G-STBC偵測法
4.3 效能模擬與複雜度分析
4.4 結語
5 FGD-B架構設計
5.1 快速運算之FGD-B架構
5.2 低成本之FGD-B架構
5.3 模擬與驗證
5.4 結語
6 結論與未來展望
6.1 結論
6.2 未來展望
7 附錄
[1] Y. Chen, Z. Xu, J. He, Z. Pan, C.-L. I, and S. Wang, “Evaluation of potential energy efficiency gain of 5G wireless networks,” in Proc. of IEEE Globecom Workshops, pp. 1-6, Dec. 2015.
[2] B.-J. Chang, Y.-H. Liang, K.-P. Jhuang, and T.-S. Tsai, “Cross-layer channel selection and reward-based power allocation for maximizing system capacity and reward in 4G MIMO wireless communications,” in Proc. of ISEEE International Conf., vol. 3, pp. 1793-1797, Apr. 2014.
[3] Y. S. Cho, J. Kim, W. Yang, and C. Kang, MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2010.
[4] M. D. Renzo and H. Haas, “On transmit diversity for spatial modulation MIMO: Impact of spatial constellation diagram and shaping filters at the transmitter,” IEEE Trans. on Vehicular Technology, vol. 62, no. 6, pp. 2507-
2531, July 2013.
[5] E. Stavrou, O. Litschke, R. Baggen, and C. Oikonomopoulos- Zachos, “Dualbeam antenna for MIMO WiFi base stations,” in Proc. of European Conf. on Antennas and Propagation, pp. 1869-1871, Apr. 2014.
[6] J. Adeane, M. R. D. Rodrigues, I. Berenguer, and I. J. Wassell, “ Improved detection methods for MIMO-OFDM-CDM communication systems,” in Proc. of IEEE Vehicular Technology Conf., vol. 3, pp. 1604-1608, Sep. 2004.
[7] T. L. Marzetta, “ Massive MIMO: An introduction,” Bell Labs Technical Journal , vol. 20, pp. 11-22, Mar. 2015.
[8] T. E. Bogale and L. B. Le, “Massive MIMO and mmWave for 5G wireless HetNet potential benefits and challenges,” IEEE Vechicular Techonology Magazine,
vol. 11, no. 1, pp. 64-75, Feb. 2016.
[9] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to largescale MIMOs,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 4, pp. 1941-1988, Sep. 2015.
[10] H. Huang and V.-K.-N. Lau, “Partial interference alignment for K-user MIMO interference channels,” IEEE Trans. on Signal Processing, vol. 59, no. 10, pp. 4900-4908, Oct. 2011.
[11] H. Wang, W. Wang, X. Chen, and Z. Zhang, “Wireless information and energy transfer in interference aware massive MIMO systems,” in Proc. of IEEE Global Commun. Conf., pp. 2556-2561, Dec. 2014.
[12] H. Dai, A. F. Molisch, and H. V. Poor, “Downlink capacity of interferencelimited MIMO systems with joint detection,” IEEE Trans. on Wireless Commun., vol. 3, no. 2, pp. 442-453, Mar. 2004.
[13] H. Men and M. Jin, “A low-complexity ML detection algorithm for spatial modulation systems with MPSK constellation,” IEEE Commun. Letters, vol. 18, no. 8, pp. 1375-1378, Aug. 2014.
[14] A. Trimeche, N. Boukid, A. Sakly, and A. Mtibaa, “Performance analysis of ZF and MMSE equalizers for MIMO systems,” in Proc. of International Conf. on Design & Technology of Integrated Systems, pp. 1-6, May 2012.
[15] J. M. Cioffi, G. P. Dudevoir, M. Vedat Eyuboglu, and G. D. Forney, “MMSE decision-feedback equalizers and coding. I. equalization results,” IEEE Trans. on Commun., vol. 43, no. 10, pp. 2582-2594, Oct. 1995.
[16] J. M. Cioffi, G. P. Dudevoir, M. Vedat Eyuboglu, and G. D. Forney, “ MMSE decision-feedback equalizers and coding. II. coding results,” IEEE Trans. on Commun., vol. 43, no. 10, pp. 2595-2604, Oct. 1995.
[17] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “VBLAST: An architecture for realizing very high data rates over the richscattering wireless channel,” in Proc. of URSI International Symposium on
Signals, Systems, and Electronics. Conf., pp. 295-300, Oct. 1998.
[18] J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for optimum sequential signal detection in a BLAST system,” IEEE Trans. on Signal Processing, vol. 51, no. 7, pp. 1722-1730, July 2003.
[19] T.-H. Liu and Y.-L. Yeh Liu, “Modified fast recursive algorithm for efficient MMSE-SIC detection of the V-BLAST system,” IEEE Trans. on Wireless Commun., vol. 7, no. 10, pp. 3713-3717, Oct. 2008.
[20] M. Agiwal, A. Roy, and N. Saxena, “ Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surveys and Tutorials, vol. 18, no. 3, pp. 1617-1655, Feb. 2016.
[21] K. A. Alnajjar, P. J. Smith, and G. K.Woodward,“Low complexity V-BLAST for massive MIMO,” in Proc. of IEEE Workshop on Australian Commun. Theory, pp. 22-26, Feb. 2014.
[22] K. A. Alnajjar, P. J. Smith; G. K. Woodward, and D. A. Basnayaka, “Design and analysis of a reduced complexity MRC V-BLAST receiver for massive MIMO,” in Proc. of IEEE International Workshop on Signal Processing Adv. in Wireless Commun., 5 pages, July 2016.
[23] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[24] T.-H. Liu, J.-Y. Jiang, and Y.-S. Chu, “A low-cost MMSE-SIC detector for the MIMO system: Algorithm and hardware implementation,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 58, no. 1, pp. 56-61, Jan. 2011.
[25] T. Li, S. Patole, and M. Torlak, “A multistage linear receiver approach for MMSE detection in massive MIMO,” in Proc. of Asilomar Conf. on Signals, Systems and Computers, pp. 2067-2072, Nov. 2014.
[26] D. C. Montagomery and G. C. Runger, Applied Statistics and Probability for Engineers. 5th ed., Wiley, 2011.
[27] K. S. Schneider, “Optimum detection of code division multiplexed signals,” IEEE Trans. on Aerospace and Electronic systems, vol. AES-15, no. 1, pp. 181-185, Jan. 1979.
[28] R. Lupas and S. Verdu, “Near-far resistance of multi-user detectors in asynchronous channel,” IEEE Trans. on Commun., vol. 38, no. 4, pp. 496-508, Apr. 1990.
[29] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous codedivision multiple-access channels,” IEEE Trans. on Information Theory, vol. 35, no. 1, pp. 123-136, Jan. 1989.
[30] G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed., Johns- Hopkins, 1996.
[31] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.
[32] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. on Information Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
[33] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE Journal on Selected Areas in Commun., vol.17, no. 3, pp. 451-460, Mar. 1999.
[34] 陳澤與占海明, 詳解MATLAB在科學計算中的應用, 電子工業出版社,2011.
[35] 具再熙, Verilog2001及SystemVerilog, 全華圖書, 2007.
[36] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to a change in one element of a given matrix,” The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124-127, Mar. 1950.
[37] H. V. Henderson and S. R. Searle, “On deriving the inverse of a sum of matrices,” SIAM Review, vol. 23, no. 1, pp. 53-60, Jan. 1981.
[38] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-Hill, 2008.
[39] H. Zhu, W. Chen, B. Li, and F. Gao, “A fast recursive algorithm for GSTBC,” IEEE Trans. on Commun., vol. 59, no. 8, pp. 2084-2089, Aug. 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top