(35.175.212.130) 您好!臺灣時間:2021/05/15 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪懿成
研究生(外文):HUNG, I-CHENG
論文名稱:利用多衛星遙測資料建立北太平洋長鰭鮪棲地適合度經驗模式
論文名稱(外文):Habitat suitability empirical model of albacore tuna in the North Pacific Ocean using multi-satellite remote sensing data
指導教授:李明安李明安引用關係
指導教授(外文):Ming-An Lee
口試委員:陳志遠蘇楠傑
口試委員(外文):Chiee-Young ChenNan-Jay Su
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:長鰭鮪衛星遙測棲地適合度模式最大熵值
外文關鍵詞:Albacore (Thunnus alalunga)remote sensinghabitat suitability indexMaximum Entropy model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
近年利用棲地適合度(HSI)經驗模式探討物種的棲地變動,已被廣泛應用於海洋生物棲地環境的評估。長鰭鮪是我國重要的商業性漁業資源之ㄧ,本研究利用1998~2012年台灣延繩釣漁船於北太平洋海域釣獲之漁業數據,結合多衛星遙測和演算之不同水文環境資料,包括海表面水溫(SST)、海表面高度離均差(SSH)、混合層深度(MLD)、海表面葉綠素濃度(SSC)及渦流動能(EKE),建立五種不同之經驗模式,並利用統計數值AIC篩選出最佳的經驗模式,以探討北太平洋長鰭鮪的棲地適合度。結果顯示北太平洋長鰭鮪的主要漁期在11~3月,高釣獲率分布在25~40°N之間,而偏好水域的SST值介於18~22°C、SSHA值介於0.33~0.55m、MLD值介於130~160m、SSC值介於0.09至0.14mg/m3及EKE值介於0.007~0.105 cm/s2。棲地模式選擇方面以MaxEnt為最佳模式,其R2值高達55%,此外從結果可得水溫對於長鰭鮪CPUE變動的影響力最為明顯。研究區域之高HSI隨著主要漁期月別變動有向西推移的趨勢,其中在3月時於20°N以下、150~170°E出現少許的高HSI值,整體的HSI變動與長鰭鮪CPUE分佈一致,亦即此模式有足夠的可信度預測北太平洋長鰭鮪的潛在漁場變動。另外,環境的變動會造成適合棲地的改變,因此本研究結果有助於我國漁業機關與業者對北太平洋長鰭鮪漁況預報之可行性評估的參考。
Empirical habitat suitability index was widely used to detect the habitat variance of marine species in last two decades. Albacore, Thunnus alalunga, is a highly migratory species of important commercial value and widely distribution in three oceans. In this study, the satellite-derived environmental variables, including sea surface temperature (SST), sea surface height anomaly (SSHA), mixed layer depth (MLD), sea surface chlorophyll-a (SSC), eddy kinetic energy (EKE), were used to combine with catch data collecting from Taiwanese longline fisheries during 1998~2012 for establishing five kinds of empirical habitat suitability index, and identifying the optimal habitat of albacore in the North Pacific Ocean. Our results revealed that the high CPUE occurred in November to March in time and distributed over 25~40°N in space. The optimal range of hydrological variables in SST, SSHA, MLD, SSC, EKE, respectively, for the habitat of albacore are 19~22.5°C, 0.3~0.55m, 40~150m, 0.08~ 0.14mg/m3, 0.025~0.15 cm/s2. The Maximum Entropy model (MaxEnt) with five environmental variables was found to be the most appropriate model explaining the habitat variance of albacore in the North Pacific Ocean. The geographic information system maps of fishing period of the predicted HSI values were overlapped by the observed CPUE, suggesting that the model can be used as a tool for reliable prediction of potential fishing grounds with the development of management regulations.
摘要
Abstract
壹、前言 1
1.1 長鰭鮪型態特徵與生態習性
1.2 太平洋長鰭鮪漁獲量變動趨勢
1.3 鮪釣漁況與海洋環境關係
1.4 研究動機與目的
貳、材料與方法
2.1 北太平洋海洋環境狀況
2.2 研究流程
2.2 資料來源
2.3 環境參數的SI值推算
2.4 HSI經驗模式 7
2.5 HSI最大熵值法 (Maximum Entropy, MaxEnt)
2.6 長鰭鮪最適合之HSI模式選擇
参、結果
3.1 北太平洋長鰭鮪漁獲量之時、空間及CPUE分布
3.1.1 年別與月別漁獲量及努力量
3.1.2 CPUE之時空分布
3.2 長鰭鮪漁場海洋環境變動
3.2.1 海水表面溫度(SST)
3.2.2 海水表面高度離均差(SSHA)
3.2.3 混和層深度(MLD)
3.2.4 海水表面葉綠素濃度(SSC)
3.2.5 渦流動能(EKE)
3.3 漁海況變動
3.3.1 長鰭鮪的棲地環境
3.3.2 棲地適合度模式之驗證及選擇
3.3.3 HSI與CPUE之空間套適
肆、討論
4.1海洋環境變動對長鰭鮪釣獲率之影響
4.2 成熟魚與未成熟魚之分布比例
4.3 棲地適合度模式選擇的差異性
4.4 北太平洋長鰭鮪之HSI變動
伍、結論與未來展望
參考文獻
Akaike, H. (1973) Maximum likelihood identification of Gaussian autoregressive moving average models', Biometrika,60(2), pp. 255-265.
Alabia, I.D., Saitoh, S.I., Mugo, R., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T., Seito, M. (2015) Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fisheries Oceanography 24, 190-203.
Aili Qin, B.L., Quanshui, G. (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Elsevier Masson, pp.139-146.
Andrade, H. A. (2003). The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south‐western Atlantic. Fisheries Oceanography, 12(1), 10-18.
Arrizabalaga, H., Costas, E., Juste, J., Gonza´lez-Garca´s, A., Nieto, B., Lo´pez-Rodas, V. (2004) Population structure of albacore Thunnus alalunga inferred from blood groups and tag-recapture analyses. Mar Ecol Prog Ser 282:245–252
Arrizabalaga, H., Lopez-Rodas, V., Costas, E., Gonza´lez-Garca´s, A. (2007) Use of genetic data to assess the uncertainty in stock assessments due to the assumed stock structure: the case of albacore (Thunnus alalunga) from the Atlantic Ocean. Fish Bull 105(1):140–146
Barkley, R. A., Neill, W. H. and Gooding, R. M. (1978) Skipjack tuna, Katsuwonus pelamis, habitat based on temperatureand oxygen requirements, Fish. Bull, 76(3), pp. 653-662.
Bougis, P. (1976). Marine plankton ecology. North-Holland Publishing Company, 355pp.
Briand, K., Molony B., Lehodey, P. (2011) A study on the variability of the albacore (Thunnus alalunga) longline cath rates in the southwest Pacific Ocean. Fish Oceanogr 20(6):517–529
Chang, Y.J., Sun, C.L., Chen, Y., Yeh, S.Z.,DiNardo, G., Su, N.J. (2013) Modelling the impacts of environmental variation on the habitat suitability of swordfish, Xiphias gladius, in the equatorial Atlantic Ocean. Ices Journal of Marine Science 70,1000-1012.
Chelton, D., Bernal, P., McGowan, J. (1982) Large-scale interannual physical and biological interaction in the California Current. Journal of Marine Research 40,1095–1125.
Chen, K.S., Crone, P.R., Hsu, C.C. (2010) Reproductive biology of albacore Thunnus alalunga. J Fish Biol 77(1):119–136
Chen, X. J., Li, G., Feng, B. and Tian, S. Q. (2009). Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. Journal of Oceanography, 65(1): 93-102.
Childers, J., Snyder, S. and Kohin, S. (2011). Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fisheries Oceanography, 20(3), 157-173.
Chow, S., Kishino, H. (1995) Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial genomes. J Mol Evol 41:741–748
Clemens, H. B. (1961) Fish Bulletin No. 115. The Migration, Age, And Growth of Pacific Albacore (Thunnus germo), 1951–1958: California Department of Fish and Game, 128pp.
Collette, B. B.,Nauen,C. E. (1983) FAO species catalogue, v.2. Scombrids of the world, an annotated and liiustrated catalogue of tunas, mackerels, bonitos and related species known to data. FAO Fish. Synop., 125, 2: 81 pp.
Davies, C.A., Gosling, E.M. Was, A., Brophy, D., Tysklind, N. (2011) Microsatellite analysis of albacore tuna (Thunnus alalunga): population genetic structure in the North-East Atlantic Ocean and Mediterranean Sea. Mar Biol 158:2727–2740
Dell, J., Wilcox, C. and Hobday, A. J. (2011) Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to Australia’s East Coast: making the most of commercial catch data. Fisheries Oceanography, 20(5), 383-396.
Farley, J. and Clear, N. (2008) Albacore tuna: investigation of size monitoring, age composition, and spawning activity in the ETBF. Australian: CSIRO Marine and Atmospheric Research, 66pp.
Farley, J.H., Williams, A.J., Hoyle, S.D., Davies, C.R., Nicol, S.J. (2013a) Reproductive dynamics and potential annual fecundity of the South Pacific albacore tuna (Thunnus alalunga). Plos One 8(4):e60577
Fielding, A.H., Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38-49.
Freeman, L.A., Kleypas, J.A., Miller, A.J. (2013) Coral Reef Habitat Response to Climate Change Scenarios. Plos One 8, 14.
Frimodt, C. (1995) Multilingual illustrated guide to the world's commercial warmwater fish. Fishing News Books, Osney Mead, Oxford, England. 215 pp.
Gillett, R. (2013) Tuna for Tomorrow. Working Paper 11, Indian Ocean Commission, SmartFish Programme, Mauritus.
Glaser, S.M. (2010) Interdecadal variability in predator-prey interactions of juvenile North Pacific albacore in the California Current System. Mar Ecol Prog Ser 414:209–221
Glover, D. M., Brewer, P. G. (1988) Estimates of wintertime mixed layer nutrient concentrations in the North Atlantic. Deep-Sea Res., 35, 1525-46.
Grebenkov, A., Lukashevich, A., Linkov, I., Kapustka, L. (2006) Ahabitat suitability evaluation technique and its application to environmental risk assessment. Detection and Disposal of Improvised Explosives, Springer Netherlands: 191-201.
Hermosilla, C., Rocha, F., Valavanis, V.D. (2011) Assessing Octopus vulgaris distribution using presence-only model methods. Hydrobiologia 670, 35-47.
Hess, G. R., Bay, J. M. (2000). A regional assessment of windbreak habitat suitability. Environmental Monitoring and Assessment, 61(2): 237-254.
IATTC (2013) Tunas and billfishes in the eastern Pacific Ocean in 2012. Fishery status report 11, La Jolla, California
Ichinokawa, M., Coan, A. L., Takeuchi, Y. (2008). Transoceanic migration rates of young North Pacific albacore, Thunnus alalunga, from conventional tagging data. Canadian Journal of Fisheries and Aquatic Sciences, 65(8), 1681-1691.
Iversen, R.T.B. (1962) Food of albacore tuna, Thunnus germo (LACE´PE`DE) in the central and northeastern Pacific. From Fish Bull Fish Wildl Serv 62(214):458–481
Ishii, K. and Saio, S. (1972). On the oceanographic condition for albacore in the western South Pacific Ocean. Bull. Jap. Soc. Scient. Fish., 38:1341-1349.
Jenkins, R. E. (1978). Heritage classification: the element of ecological diversity. Nature Conservancy News, 28(24-25): p.30.
Juan-jorda´, M.J., Mosqueira, I., Freire, J., Ferrer-Jorda´, E., Dulvy, N.K. (2016) Global scombrid life history dataset. Ecology.doi:10.1890/15-1301
Kara, A.B., Rochford, P.A., Hurlburt, H.E. (2000) An optimal definition for ocean mixed layer depth. Journal of Geophysical Research-Oceans 105, 16803-16821.
Kerandel, J. A., Leroy, B. and Kirby, D. S. (2006)Age and growth of albacore by otolithanalysis. Secretariat of the Pacific Community, 37 Noumea. SPC Oceanic Fisheries Programme Internal Report.
Kimura, S., Nakai, M., Sugimoto, T. (1997) Migration of albacore, Thunnus alalunga, in the North Pacific Ocean in relation to large oceanic phenomena. Fish Oceanogr 6:51–57
Kimura, S., A. Kasai, H. Nakata, T. Sugimoto, J. H. Simpson and J. V. S. Cheok (1997a). Biological productivity of meso-scale eddies caused by frontal disturbances in the Kuroshio. ICES Journal of Marine Science: Journal du Conseil, 54(2), 179-192.
Komatsu, T., Sugimoto, T., Ishida, K., Itaya, K., Mishra, P. and Miura, T. (2002) Importance of the Shatsky Rise area in the Kuroshio Extension as an offshore nursery ground for Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus). Fish. Oceanogr. 11:354–360.
Lan, K. W., Lee, M. A., Lu, H. J., Shieh, W. J., Lin, W. K., and Kao, S. C. (2011). Ocean variations associated with fishing conditions of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic Ocean. ICES Journal of Marine Science, 68(6), 1063-1071.
Lan, K.W., Kawamura, H., Lee, M.A., Lu, H.J., Shimada, T., Hosoda, K., Sakaida, F. (2012) Relationship between albacore (Thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature. Fisheries Research 113, 1-7.
Lauren V. Weatherdon, Y. O. (2016) Projected Scenarios for Coastal First Nations’ Fisheries Catch Potential under Climate: Management Challenges and Opportunities. The PLOS ONE Community Blog.doi:10.1371
Laurs, R.M., Lynn, R.J. (1977) Seasonal migration of North Pacific albacore, Thunnus alalunga, into North America coastal waters: distribution, relative abundance and association with transition zone waters. US Fish Bull 75:795–822
Laurs, R.M., Lynn, R.J. (1991) North Pacific albacore ecology and oceanography. NOAA Tech Rep NMFS 105:69–87
Lauver, C. L. and Busby, W. H. (2002). Testing a GIS model of habitat suitability for a declining grassland bird. Environmental Management, 30(1): 88-97.
Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., and Picaut, J. (1997)El Nino southern oscillation and tuna in the western Pacific, Nature, 389, 715-717.
Lehodey, P., Andre, J. M., Bertignac, M., Hampton, J., toens, A. S., Menkès, C., Memery, L. and Grima, N. (1998). Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio‐geochemical model. Fisheries Oceanography, 7(3‐4), 317-325.
Liming, S., Liuxiong, X. and Xinjun, C. (2004) 'Preliminary analysis of the biological characteristics of bigeye tuna (Thunnus obesus) sampled from China tuna longlining fleet in central Atlantic Ocean', Col. Vol. Sci. Pap. ICCAT,58(1), pp. 283-291.
Liu, Q. Y., Jia, Y. L., Liu, P. H., Wang, Q. and Chu, P. C. (2001). Seasonal and intraseasonal thermocline variability in the Central South China Sea. [Article]. Geophysical Research Letters, 28(23): 4467-4470.
Lobel, P. S. and Robinson, A. R.. (1988). Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. Journal of Plankton Research, 10(6), 1209-1223.
Logerwell, E.A. and Smith, P.E. (2001) Mesoscale eddies and survival of life stage Pacific sardine (Sardinop sagax) larvae. Fish. Oceanogr. 10:13–25.
Lu, H.J., Lee, K.T., Liao, C.H. (1998) On the relationship between El Nino Southern oscillation and South Pacific albacore. Fisheries Research 39, 1-7.
McClellan, C.M., Brereton, T., Dell'Amico, F., Johns, D.G., Cucknell, A.C., Patrick, S.C., Penrose, R., Ridoux, V., Solandt, J.L., Stephan, E., Votier, S.C., Williams, R., Godley, B.J. (2014) Understanding the Distribution of Marine Megafauna in the English Channel Region: Identifying Key Habitats for Conservation within the Busiest Seaway on Earth. Plos One 9, 16
Mugo, R., Saitoh, S. I., Nihira, A. and Kuroyama, T. (2010)Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography, 19(5), 382-396Park, Y. C (1991). Status of the Korean tuna longline fishery in the Indian Ocean. FAO IPTP TWS/90/52.
Nakadate, M., Vin˜as, J., Corriero, A., Clarke, S., Suzuki, N., Chow, S. (2005) Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J Fish Biol 66:1545–1557
Olson, R.J. and Boggs, C.H. (1986) Apex predation by yellowfin tuna (Thunnus albacores): independent estimates from gastric evacuation and stomach contents, bioenergetics and cesium concentrations. Can. J. Fish. Aquat. Sci. 43:1760–1755.
Otsu, T., Uchida, R.N. (1963) Model of the migration of albacore in the North Pacific Ocean. Fish Bull 63:33–44.
Otsu, T., Yoshida, H.O. (1966) Distribution and migration of albacore (Thunnus alalunga) in the Pacific. Ocean Proc Indo-Pacific Fish Coun 12(II):49–64
Paul, B. (1976)Marine plankton ecology. North-Hoodlan Publishing Company, 335.
Pearcy, W.G. (1973) Albacore oceanography off Oregon—1970.Fish Bull US 71:489–504.
Phillips, S.J., Dud, M., Schapire, R.E. (2004) A maximum entropy approach to species distribution modeling, Proceedings of the twenty-first international conference on Machine learning. ACM, Banff, Alberta, Canada, p. 83.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259.
Polovina, J.J., Howell, E., Kobayashi, D.R., Seki, M.P. (2001) The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography 49, 469-483.
Prince, E. D. and Goodyear, C. P. (2006) 'Hypoxia‐based habitat compression of tropical pelagic fishes', Fisheries Oceanography,15(6), pp. 451-464.
Pujolar, J.M., Rolda´n, M.I., Pla, C. (2003) Genetic analysis of tuna populations, Thunnus thynnus thynnus and T. alalunga. Mar Biol 143(3):613–621
Roberts, P. E. (1980). Surface distribution of albacore tuna Thunnus alalunga Bonnaterre in relation to the subtropical convergence zone east of New Zealand. N. Z. J. Mar. Freshwat. Res.,14:373-380.
Roden, G.I. (1991) Subarctic-subtropical transition zone of the North Pacific: large-scale aspects and mesoscale structure. In: Biology, Oceanography and Fisheries of the North Pacific Transition Zone and Subarctic Frontal Zone. J.A. Wetherall (ed.) Honolulu: NOAA Technical Report NMFS, 105, pp. 1–38.
Roger, C. (1994). The plankton of the tropical western Indian Ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis). Environmental Biology of Fishes, 39(2), 161-172.
Sagarminaga, Y., Arrizabalaga, H. (2014) Relationship of Northeast Atlantic albacore juveniles with surface thermal and chlorophyll-a fronts. Deep-Sea Research Part Ii-Topical Studies in Oceanography 107, 54-63.
Schaefer, K.M. (2001) Reproductive biology of tunas. Fish Physiol 19:225–270 .
Singh, A.A., Sakuramoto, K. and Suzuki, N. (2015) Impact of Climatic Factors on Albacore Tuna Thunnus alalunga in the South Pacific Ocean. American Journal of Climate Change, 4, 295-312.
Song, L.M., Zhang, Y., Xu, L.X., Jiang, W.X., Wang, J.Q. (2008) Environmental preferences of longlining for yellowfin tuna (Thunnus albacares) in the tropical high seas of the Indian Ocean. Fisheries Oceanography 17, 239-253.
Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z. and DiNardo, G. (2011)Modelling the impacts of environmental variation on the distribution of blue marlin, Makaira nigricans, in the Pacific Ocean. ICES Journal of Marine Science, 68(6), 1072-1080.
Sund, P.N., Blackburn, M. and Williams, F. (1981) Tuna and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Annu. Rev. 19:443–512.
Swets, J. A. (1988)Measuring the accuracy of diagnostic systems. Science, 240: 1285–1293.
Takagi, M., Okamura, T., Chow, S., Taniguchi, N. (2001) Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish Bull 99:697–701
Thuiller, W. (2003) BIOMOD -optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353-1362.
Tian, S., Chen, X.j., Chen, Y., Xu ,L., Dai, X. (2009) Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fish Res 95:181–188
Ueyanagi, S. (1969). Observations on the distribution of tuna larvae in the Indo-Pacific Ocean with emphasis on the delineation of the spawning areas of albacore, Thunnus alalunga. Bulletin Far Seas Fisheries Research Laboratory, 2, 177-256.
VAN DER LEE, G.E.M., VAN DER MOLEN, D.T., VAN DEN BOOGAARD, H.F.P. and VAN DER KLIS, H., 2006, Uncertainty analysis of a spatial habitat suitability model and implications for ecological management of water bodies. Landscape Ecology, 21, pp. 1019–1032.
Vin˜as, J., Santiago, J., Pla, C. (1999) Genetic characterization and Atlantic-Mediterranean stock structure of Albacore, Thunnus alalunga. Collect Vol Sci Papp ICCAT 49:188–191
Vin˜a,s J., Alvarado Bremer, J.R., Pla, C. (2004) Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar Biol 145:225–232
Ward, T.M., McLeay, L.J., Dimmlich, W.F., Rogers, P.J., McClatchie, S.A.M., Matthews, R., Kampf, J., Van Ruth, P.D. (2006) Pelagic ecology of a northern boundary current system: effects of upwelling on the production and distribution of sardine (Sardinops sagax), anchovy (Engraulis australis) and southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Fisheries Oceanography 15, 191-207.
Wells, R.J.D., Kinney, M.J., Kohin, S., Dewar, H., Rooker, J.R., Snodgrass, O.E. (2015) Natural tracers reveal population structure of albacore (Thunnus alalunga) inthe eastern North Pacific. ICESJournal of Marine Science 72, 2118-2127.
Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G., Halvorsen, R. (2008) Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography 35, 2298-2310
Wu, G.C.C., Chiang, H.C., Chen, K.S., Hsu, C.C., Yang, H.Y. (2009) Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fish Res 95:125–131
Yoneta, K. and Saito, S. (1973). Studies on the large-sized albacore and its
vertical distribution in the western South Pacific Ocean. Bulletin of the Japanese Society of Scientific Fisheries, 39(6), 617-624.
Zainuddin, M., Saitoh, K., Saitoh, SI. (2008) Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish Oceanogr 17:61–73
Zainuddin, M., Kiyofuji, H., Saitoh, K. and Saitoh, S. I. (2010). Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 53(3-4), 419-431.
Zhang, J. Z., Wanninkhof, R. and Lee, K. (2001). Enhanced new production observed from the diurnal cycle of nitrate in an oligotrophic anticyclonic eddy. Geophysical research letters, 28(8), 1579-1582.
陳松安(2001)。衛星測高資料分析南海海潮、海水位、環流及漩渦。國立交通大學土木工程系研究所博士論文,180pp
黃敏茜(2012)。以泛加成模式分析南太平洋長鰭鮪釣獲率與海洋環境之關係。國立台灣海洋大學環境生物與漁業科學研究所碩士論文,22pp。
羅傳進(1998)。臺灣漁業發展史。立法院羅傳進委員辦公室,227 頁。
嚴國維(2010)。以GIS建立中西太平洋黃鰭鮪棲地適合度經驗模式。國立台灣海洋大學環境生物與漁業科學學系碩士論文,20pp。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top