跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂繹昕
研究生(外文):Lu, Yi-Sin
論文名稱:以耳石分析台灣西部沿岸多鱗四指馬鮁幼魚之日周齡成長
論文名稱(外文):Using daily growth increments in otoliths to age juvenile fourfinger threadfin (Eleutheronema rhadinum) in waters off western Taiwan
指導教授:蘇楠傑
指導教授(外文):Su, Nan-Jay
口試委員:葉信明江偉全王佳惠
口試委員(外文):Yeh, Hsin-MingChiang, Wei-ChuanWang, Chia-Hui
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:多鱗四指馬鮁年齡與成長耳石日周輪
外文關鍵詞:Fourfinger threadfinage and growthotolithsdaily growth increments
相關次數:
  • 被引用被引用:5
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
本研究以耳石日周輪判讀分析台灣西部沿岸多鱗四指馬鮁幼魚之年齡成長,自2015年1月至2016年12月,在台灣西部雲林箔仔寮漁港、台中松柏漁港、苗栗龍鳳漁港及新北市淡水漁港,採集總計915尾多鱗四指馬鮁生物樣本,樣本尾叉長範圍介於11.5~80.0公分,魚體樣本全重介於29~8100公克,分析量測結果顯示,多鱗四指馬鮁體長體重關係在雌雄間並無顯著差異。研究結果顯示多鱗四指馬鮁耳石輪紋形成具有日週期性,尾叉長範圍50公分以下的多鱗四指馬鮁可判讀耳石日周輪來查定其年齡。本研究重覆判讀三次的結果顯示多鱗四指馬鮁幼魚樣本日齡介於87~326天,平均百分誤差(APE)為2.36%、變異係數(CV)為3.16%。線性函數:尾叉長(FL) = 58.197 × 年齡(t)為多鱗四指馬鮁幼魚套適最佳之成長方程式,多鱗四指馬鮁成長快速,一歲時尾叉長可達50公分以上,個體成長速率具有一致性,本研究建議可以耳石半徑(OR)與日齡(Daily age)關係式:Daily age = 39.258 OR + 16.261,作為簡易推估台灣西部沿岸多鱗四指馬鮁幼魚日齡之方式。
Daily growth increments in otoliths were used to age juveniles of East Asian fourfinger threadfin, Eleutheronema rhadinum, in waters off western Taiwan. A total of 915 samples with fork length (FL) ranging from 11.5 to 80.0 cm and body weight from 29 to 8100 g were collected at fishing ports in Yunlin, Taichung, Miaoli and New Taipei during January 2015 to December 2016 in this study. There is no significant difference in the relationship of body weight and fork length between sexes. Daily periodicity of microincrement formation in otoliths was further validated based on studies for E. tetradactylum. Results indicated that daily increments could be used as age determination tools for fish smaller than 50 cm in FL. The East Asian fourfinger threadfin were aged from 87 to 326 days in this study, with a reading precision of 2.36% in average percent error (APE) and 3.16% in coefficients of variation (CV). The growth of the East Asian fourfinger threadfin juveniles can be best described using a linear function of length (FL) = 58.097 × Age (t). As a fast growing species, fourfinger threadfin juveniles can reach more than 50 cm in FL, with daily growth rates consistent among individuals. The relationship between daily age and otolith radius (OR): Daily age = 39.258 OR + 16.261 could be considered a convenient approach to age juvenile fourfinger threadfin in waters off western Taiwan as suggested in this study.
目次

摘要 ……………………………………………………………………………….II
Abstract ………………………………………………………………………………III
圖次 ………………………………………………………………………………VI
表目次 ………………………………………………………………………………IX
第一章、前言 1
1.1 多鱗四指馬鮁及四指馬鮁生物學概論 1
1.2 多鱗四指馬鮁漁業概況 1
1.3 前人研究概況 2
1.4 耳石日周輪之發展與應用 3
1.5 研究目的 4
第二章、材料與方法 5
2.1 樣本採集 5
2.2 體長體重之關係 5
2.3 耳石製備 6
2.4 年齡形質選定 7
2.5 耳石輪紋判讀 7
2.6 成長方程式 8
2.7 成長模式的選擇 9
2.8 個體成長速率與日齡推估方法之比較 10
第三章、結果 11
3.1 生物樣本採集 11
3.2 體長體重關係式 11
3.3 耳石形態分析 12
3.3.1 耳石對稱性 12
3.3.2 年齡形質選定 12
3.3.4 耳石切片的構造及判讀 13
3.4 成長型式分析 14
3.5 成長速率推估 14
3.6 成長方程式 14
3.7 簡易判讀日齡之方法 15
第四章、討論 17
4.1 樣本採集之影響 17
4.2 不同年齡形質之選定 17
4.3 日周輪形成之驗證 18
4.4 輪紋判讀方法 18
4.5 影響日輪判讀之因素 19
4.6 日齡的精確度 20
4.7 成長速率變動與驗證 21
4.8 成長方程式比較 22
4.9 簡易推估日齡之方程式 23
第五章、結論 24
參考文獻 …………………………………………………………………………..25
附圖 ………………………………………………………………………………32
附表 ………………………………………………………………………………65




圖次

Fig. 1. Measurement of fork length and total length for (a) fourfinger threadfin (Eleutheronema tetradactylum) and (b) East Asian fourfinger threadfin (E. rhadinum). 32
Fig. 2. Annual catches of Polynemidae by fishery in Taiwan from 2003 to 2015. Data source: Fishery statistical yearbook, Fisheries Agency, Council of Agriculture (https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx). 33
Fig. 3. Annual catches of Polynemidae in the offshore fisheries in Taiwan from 2003 to 2015. Data source: Fishery statistical yearbook, Fisheries Agency, Council of Agriculture (https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx). 34
Fig. 4. Annual catches of Polynemidae in the coastal fisheries in Taiwan from 2003 to 2015. Data source: Fishery statistical yearbook, Fisheries Agency, Council of Agriculture (https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx). 35
Fig. 5. Annual fry releasing for fourfinger threadfin in Taiwan for 2004-2016. Data are sourced from the Taiwan Fisheries Sustainable Development Association (http://www.tfsda.org.tw/FingerlingRelease/record.php). 36
Fig. 6. Illustration of vestibular apparatus to see the otoliths within the inner ear of an East Asian fourfinger threadfin. 37
Fig. 7. Lapillus (a), asteriscus (b) and sagittal (c) otoliths of an East Asian fourfinger threadfin (48.3 cm in fork length). 38
Fig. 8. Illustration of the otolith radius measurement from the core to the edge (postrostrum) in otolith section for an East Asian fourfinger threadfin. 39
Fig. 9. Sex-pooled (a) and sex separated (b) length-frequency distributions for the East Asian fourfinger threadfin collected at the fish markets of Taiwan. 40
Fig. 10. The relationship between fork length and body weight for the East Asian fourfinger threadfin in waters off western Taiwan. Samples were collected from January 2015 to December 2016. 41
Fig. 11. Relationships between (a) left and (b) right otolith radius and fork length for East Asian fourfinger threadfin in waters off western Taiwan. 42
Fig. 12. Relationships between (a) left and (b) right otolith weight and body weight for East Asian fourfinger threadfin in waters off western Taiwan. 43
Fig. 13. Length frequency distributions of (a) Eleutheronema rhadinum and (b) E. tetradactylum in waters off western Taiwan for age determination. 44
Fig. 14. Illustration to show the transverse section on sagittal otolith for the East Asian fourfinger threadfin in waters off western Taiwan. 45
Fig. 15. Illustration showing the daily increments on a transverse section of otolith for an East Asian fourfinger threadfin (22.8 cm in FL) collected in waters off western Taiwan. 46
Fig. 16. Incremental and discontinuous zones and the core of otolith section with reflected light for an East Asian fourfinger threadfin (8.5 cm in FL). 47
Fig. 17. A transverse section of otolith showing the determination of daily age from the core for an East Asian fourfinger threadfin (44 cm in FL). 48
Fig. 18. A transverse section of otolith showing the determination of daily age on a curved line for an East Asian fourfinger threadfin (25.8 cm in FL). 49
Fig. 19. A transverse section of otolith showing the obscure area in the core and edge for an East Asian fourfinger threadfin (8.5 cm in FL). 50
Fig. 20. The relationship between daily increment and fork length for Eleutheronema rhadinum and E. tetradactylum. The horizontal dotted line indicates the mean value of the increment for E. rhadinum. 51
Fig. 21. Relationships between elapsed days, number of rings read and fork length for Eleutheronema tetradactylum. The horizontal solid lines indicate elapsed days and dashed lines indicate the mean number of rings read for each sampling. 52
Fig. 22. Relationships between (a) average percent error (APE) and (b) coefficient of variation (CV) and the fork length (FL) for Eleutheronema rhadinum and E. tetradactylum. The horizontal dotted lines indicate the mean values of APE and CV. 53
Fig. 23. Growth patterns of Eleutheronema rhadinum showing for each individual (a) and aggregated by month (b), with a specimen of E. tetradactylum recaptured by fishermen (lines with solid points; see Fig. 32), and the hatching dates inferred from the capture dates and daily increments (c). 54
Fig. 24. The growth curve based on linear function with intercept assumed to be 0 for the East Asian fourfinger threadfin in waters off western Taiwan. 55
Fig. 25. The growth curve fitted with a linear function for the East Asian fourfinger threadfin in waters off western Taiwan. 56
Fig. 26. The growth curve fitted with a power function for the East Asian fourfinger threadfin in waters off western Taiwan. 57
Fig. 27. The growth curve fitted with a logarithmic function for the East Asian fourfinger threadfin in waters off western Taiwan. 58
Fig. 28. The growth curve fitted with the Gompertz function for the East Asian fourfinger threadfin in waters off western Taiwan. 59
Fig. 29. The growth curve fitted with the Robertson function for the East Asian fourfinger threadfin in waters off western Taiwan. 60
Fig. 30. The growth curve fitted with the von Bertalanffy growth function for the East Asian fourfinger threadfin in waters off western Taiwan. 61
Fig. 31. Relationships between otolith radius (OR) and daily age (t) based on (a) linear and (b) power function for East Asian fourfinger threadfin in waters off western Taiwan. 62
Fig. 32. Relationships between otolith weight (OW) and daily age (t) based on (a) linear and (b) power function for East Asian fourfinger threadfin in waters off western Taiwan. 63
Fig. 33. A tagged Eleutheronema tetradactylum released on 19 October 2015 and recaptured by fisherman on 28 November 2015 in Nanliao fishing port of Kaohsiung (a), with a tag made by National Taiwan Ocean University (b). 64

表目次

Table 1. Summary of the fish samples by county and by month for the East Asian fourfinger threadfin in waters off western Taiwan from 2015 to 2016. 65
Table 2. Growth equations estimated for the East Asian fourfinger threadfin in waters off western Taiwan in this study. Values in bold indicate the best growth curve fitted based on the AIC values. 66
Table 3. Age determination based on otolith radium (OR) and weight (OW), fork length (FL) and body weight (BW) for the East Asian fourfinger threadfin in waters off Taiwan. 67
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In second international symposium on information theory (Peetrov B. N. and F. Csaki.) Akademiai kiado, Budapest, Hungary, pp. 267-281.
Ashworth, E. C., Hall, N. G., Hesp, S. A., Coulson, P. G., & Potter, I. C. (2016). Age and growth rate variation influence the functional relationship between somatic and otolith size. Canadian Journal of Fisheries and Aquatic Sciences, 74(5), 680-692.
Ballagh, A. C., Welch, D. J., Newman, S. J., Allsop, Q., & Stapley, J. M. (2012). Stock structure of the blue threadfin (Eleutheronema tetradactylum) across northern Australia derived from life-history characteristics. Fisheries Research, 121, 63-72.
Beamish, R. J., & Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38(8), 982-983.
Blaxter, J. H. S. (1991). The effect of temperature on larval fishes. Netherlands Journal of Zoology, 42(2), 336-357.
Boehlert, G. W., & Yoklavich, M. M. (1984). Variability in age estimates in Sebastes as a function of methodology, different readers, and different laboratories. California Fish and Game, 70(4), 210-224.
Brothers, E. B., Mathews, C. P., & Lasker, R. (1976). Daily growth increments in otoliths from larval and adult fishes. Fishery Bulletin, 74(1), 1-8.
Brown, P., Green, C., Sivakumaran, K. P., Stoessel, D., & Giles, A. (2004). Validating otolith annuli for annual age determination of common carp. Transactions of the American Fisheries Society, 133(1), 190-196.
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197-242.
Campana, S. E., & Neilson, J. D. (1982). Daily growth increments in otoliths of starry flounder (Platichthys stellatus) and the influence of some environmental variables in their production. Canadian Journal of Fisheries and Aquatic Sciences, 39(7), 937-942.
Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032.
Cardinale, M., & Arrhenius, F. (2004). Using otolith weight to estimate the age of haddock (Melanogrammus aeglefinus): a tree model application. Journal of Applied Ichthyology, 20(6), 470-475.
Cerna, F., & Plaza, G. (2016). Daily growth patterns of juveniles and adults of the Peruvian anchovy (Engraulis ringens) in northern Chile. Marine and Freshwater Research, 67(7), 899-912.
Chang, W. Y. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences, 39(8), 1208-1210.
Chen, K. S., Shimose, T., Tanabe, T., Chen, C. Y., & Hsu, C. C. (2012). Age and growth of albacore Thunnus alalunga in the North Pacific Ocean. Journal of fish biology, 80(6), 2328-2344.
Corriero, A., Karakulak, S., Santamaria, N., Deflorio, M., Spedicato, D., Addis, P., Desantis, S., Cirillo, F., Fenech-Farrugia, A., Vassallo-Agius, R., Serna, J. M., Oray, Y., Cau, A., Megalofonou, P., & De Metrio, G. (2005). Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. Journal of Applied Ichthyology, 21(6), 483-486.
Farley, J. H., Williams, A. J., Clear, N. P., Davies, C. R., & Nicol, S. J. (2013). Age estimation and validation for South Pacific albacore Thunnus alalunga. Journal of fish biology, 82(5), 1523-1544.
Fey, D. P., & Linkowski, T. B. (2006). Predicting juvenile Baltic cod (Gadus morhua) age from body and otolith size measurements. ICES Journal of Marine Science, 63(6), 1045-1052.
Fletcher, W. J. (1991). A test of the relationship between otolith weight and age for the pilchard Sardinops neopilchardus. Canadian Journal of Fisheries and Aquatic Sciences, 48(1), 35-38.
Freeburg, E. D. W. (2014). Exploring the link between otolith growth and function along the biological continuum in the context of ocean acidification. University of Massachusetts Boston, MA.
Gallucci, V. F., Saila, S. B., Gustafson, D. J., & Rothschild, B. J. (1995). Stock Assessment: Quantitative Methods and Applications for Small Scale Fisheries (Vol. 1). CRC Press, FL.
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583.
Heath, M. R. (1992). Field investigations of the early life stages of marine fish. Advances in Marine Biology, 28, 1-174.
Hernaman, V., Munday, P. L., & Schläppy, M. L. (2000). Validation of otolith growth-increment periodicity in tropical gobies. Marine Biology, 137(4), 715-726.
Hill, K. T., Cailliet, G. M., & Radtke, R. L. (1989). A comparative analysis of growth zones in four calcified structures of pacific blue marlin, Makaira nigricans. Fishery bulletin, 87(4).
Houde, E. D., & Zastrow, C. E. (1993). Ecosystem-and taxon-specific dynamic and energetics properties of larval fish assemblages. Bulletin of Marine Science, 53(2), 290-335.
Hsu, C. C. (1999). The length–weight relationship of Albacore, Thunnus alalunga, from the Indian Ocean. Fisheries Research, 41(1), 87-92.
Huang, Y., Chen, F., Tang, W., Lai, Z., & Li, X. (2017). Validation of daily increment deposition and early growth of mud carp Cirrhinus molitorella. Journal of Fish Biology, 90(4), 1517-1532.
Jennings, S., Kaiser, M., & Reynolds, J. D. (2009). Marine Fisheries Ecology. John Wiley & Sons, New York, USA, 193pp.
Kimura, D. K., & Lyons, J. J. (1991). Between-reader bias and variability in the age-determination process. Fishery Bulletin, 89(1), 53-60.
King, M. (1995). Fisheries biology, assessment and management. Blackwell Science, Oxford, UK, 341 pp.
Lessa, R., & Duarte-Neto, P. (2004). Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fisheries Research, 69(2), 157-170.
Lou, D. C., Mapstone, B. D., Russ, G. R., Begg, G. A., & Davies, C. R. (2007). Using otolith weight–age relationships to predict age based metrics of coral reef fish populations across different temporal scales. Fisheries Research, 83(2), 216-227.
Megalofonou, P. (2000). Age and growth of Mediterranean albacore. Journal of fish biology, 57(3), 700-715.
Megalofonou, P. (2006). Comparison of otolith growth and morphology with somatic growth and age in young‐of‐the‐year bluefin tuna. Journal of Fish Biology, 68(6), 1867-1878.
Morales-Nin, B. (1989). Growth determination of tropical marine fishes by means of otolith interpretation and length frequency analysis. Aquatic Living Resources, 2(4), 241-253.
Mori, T., Noda, T., Matsuishi, T., & Lee, T. H. (2001). Relationships between otolith weight and fish swimming speed. Journal of the Fisheries Society of Taiwan, 28(3), 203-207.
Morison, A. K., Robertson, S. G., & Smith, D. C. (1998). An integrated system for production fish aging: image analysis and quality assurance. North American Journal of Fisheries Management, 18(3), 587-598.
Motomura, H. (2004). Threadfins of the world (Family Polynemidae): An annotated and illustrated catalogue of polynemid species known to date (No. 3). Food & Agriculture Org, Rome, Italy, pp. 13-18.
Motomura, H., Iwatsuki, Y., Kimura, S., & Yoshino, T. (2002). Revision of the Indo-West Pacific polynemid fish genus Eleutheronema (Teleostei: Perciformes). Ichthyological Research, 49(1), 47-61.
Ochwada, F. A., Scandol, J. P., & Gray, C. A. (2008). Predicting the age of fish using general and generalized linear models of biometric data: A case study of two estuarine finfish from New South Wales, Australia. Fisheries Research, 90(1), 187-197.
Oxenford, H. A., Hunte, W., Deane, R., & Campana, S. E. (1994). Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean. Marine Biology, 118(4), 585-592.
Panfili, J., De Pontual, H., Troadec, H., & Wrigh, P. J. (2002). Manual of Fish Sclerochronology. Ifremer, Issy-les-Moulineaux, France.
Parmentier, E., Lagardère, F., & Vandewalle, P. (2002). Relationships between inner ear and sagitta growth during ontogenesis of three Carapini species, and consequences of life-history events on the otolith microstructure. Marine Biology, 141(3), 491-501.
Pember, M. B., Newman, S. J., Hesp, S. A., Young, G. C., Skepper, C. L., Hall, N. G., & Potter, I. C. (2005). Biological parameters for managing the fisheries for blue and king threadfin salmons, estuary rock cod, Malabar grouper and mangrove jack in north-western Australia. Fisheries Research and Development Corporation Report.
Pons, M., Arocha, F., Domingo, A., Die, D. J., Brazeiro, A., & Hazin, F. H. (2016). Potential use of anal fin spines for assessing age and growth of longbill spearfish, Tetrapturus pfluegeri, in the western Atlantic Ocean. Bulletin of Marine Science, 92(4), 385-398.
Popper, A. N., Ramcharitar, J., & Campana, S. E. (2005). Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research, 56(5), 497-504.
Prince, E. D. (1991). Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. US Fish Bull, 89, 124-134.
Rabbitt, R. D., Damiano, E. R., & Grant, J. W. (2004). Biomechanics of the semicircular canals and otolith organs. In The vestibular system. Springer, New York, USA, pp. 153-201.
Rey, J., Fernández-Peralta, L., García, A., Nava, E., Clemente, M. C., Otero, P., Villar, E. I., & Piñeiro, C. G. (2016). Otolith microstructure analysis reveals differentiated growth histories in sympatric black hakes (Merluccius polli and Merluccius senegalensis). Fisheries Research, 179, 280-290.
Richards, L. J., Schnute, J. T., Kronlund, A. R., & Beamish, R. J. (1992). Statistical models for the analysis of ageing error. Canadian Journal of Fisheries and Aquatic Sciences, 49(9), 1801-1815.
Robertson, T. B. (1923). Chemical basis of growth and senescence. Lippincott, New York, USA, 98 pp.
Secor, D. H. (1992). Otolith removal and preparation for microstructural examination. Otolith microstructure examination and analysis, 117, 19-57.
Secor, D. H., Dean, J. M., & Laban, E. H. (1991). Manual for otolith removal and preparation for microstructural examination. Electric power research institute and the Belle W. Baruch institute for marine biology and coastal research, University of South Carolina, Columbia, SC.
Tzeng, W. N. (1990). Relationship between growth rate and age at recruitment of Anguilla japonica elvers in a Taiwan estuary as inferred from otolith growth increments. Marine Biology, 107(1), 75-81.
Tzeng, W. N., & Tsai, Y. C. (1992). Otolith microstructure and daily age of Anguilla japonica, Temminck & Schlegel elvers from the estuaries of Taiwan with reference to unit stock and larval migration. Journal of Fish Biology, 40(6), 845-857.
Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human biology, 10(2), 181-213.
Worthington, D. O., Doherty, P. J., & Fowler, A. J. (1995). Variation in the relationship between otolith weight and age: implications for the estimation of age of two tropical damselfish (Pomacentrus moluccensis and P. wardi). Canadian Journal of Fisheries and Aquatic Sciences, 52(2), 233-242.
Yan, Y., Wu, Y., Lu, H., Li, Z., & Jin, X. (2009). Using otolith weight to predict the age of Pennahia macrocephalus in the mouth of the Beibu Gulf. Chinese Journal of Oceanology and Limnology, 27(2), 342-349.
Zabel, R. W., Haught, K., & Chittaro, P. M. (2010). Variability in fish size/otolith radius relationships among populations of Chinook salmon. Environmental Biology of Fishes, 89(3-4), 267-278.
Zhang, Z. (1992). Ultrastructure of otolith increments and checks in the teleost fish Oreochromis niloticus. Journal of Morphology, 211(2), 213-220.
Zischke, M. T., Cribb, T. H., Welch, D., Sawynok, W., & Lester, R. J. G. (2009). Stock structure of blue threadfin Eleutheronema tetradactylum on the Queensland east coast, as determined by parasites and conventional tagging. Journal of Fish Biology, 75(1), 156-171.
Zorica, B., Sinovcic, G., & Cikes Kec, V. (2007). The application of the otolith weight as an estimator of age in the anchovy Engraulis encrasicolus. Cahiers de Biologie Marine, 48(3), 271-276.
何昱宣 (2015)。台灣東北海域齒鰆之年齡與成長研究。臺灣大學海洋研究所學位論文。
常有民、張濤、莊平、侯俊利、宋超、楊剛與章龍珍 (2013)。多鱗四指馬鮁耳石形態特徵的觀察。海洋漁業, 35(1), 24。
楊陽、莊平、張濤、侯俊利、趙峰、黃曉榮與湯滔 (2013)。多鱗四指馬鮁 4 個地理群體的形態差異。上海海洋大學學報, 22(6), 849-854。
趙優、莊平、張濤與趙峰 (2016)。中國沿海多鱗四指馬鮁(Eleutheronema rhadinum) 與四指馬鮁(E. tridactylum)形態與遺傳位點差異分析。海洋與湖沼, 47(1), 108-114。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊