跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王耀明
研究生(外文):Wang, Yao-Ming
論文名稱:核殼鈣鈦礦陰/陽極與鈰基電解質共燒之中溫固態氧化物燃料電池研究
論文名稱(外文):Study on Core-shell Perovskite Anode and Cathode Co-fired with Ceria-based Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC)
指導教授:張宏宜
指導教授(外文):Chang, Horng-Yi
口試委員:林成原郭俞麟王錫福韋文誠方冠榮李瑞益
口試委員(外文):Lin, Cherng-YuanKuo, Yu-LinWang, Sea-FueWei, Wen-Chang JFung, Kuan-ZongLee, Ruey-Yi
口試日期:2016-12-15
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:113
中文關鍵詞:鈰基電解質BSF-Ce核殼陰極LST-Ce核殼陽極中溫固態氧化物燃料電池
外文關鍵詞:ceria-based electrolyteBSF-Cecore-shell cathodeLST-Cecore-shell anodeintermediate-temperature solid oxide fuel cell (ITSOFC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
固態氧化物燃料電池(SOFC)將電化學反應轉變為電能,與傳統內燃機遵循卡諾循環的工作機制不同。主要結構由陰極、陽極與電解質等陶瓷組成。其輸出效率至少有55%,大於目前內燃機效率,是大動力廠的良好選擇。目前商業化主要限制在於操作溫度過高,約1000 oC,因此在實際應用有所阻礙。本研究以中溫固態氧化物燃料電池(ITSOFC)材料為主軸,探討陰極、陽極與電解質材料及其共燒電池組合,達到工作溫度500-800 oC的高功率ITSOFC。
本研究選用傳導氧離子的多元摻雜氧化鈰基(La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891 (LSBC)電解質材料為核心,利用簡易固態球磨,高溫燒結獲得緻密的電解質結構體。在中溫650 oC運作下,電解質的傳導率達商業化的0.01 S/cm。搭配AC交流阻抗分析,解析電解質晶粒與晶界及電極三者之阻抗,結果顯示晶界在氧離子傳導上扮演著重要的角色。LSBC超過1400 oC燒結溫度可達95%相對密度,在操作溫度550 oC以後,晶界阻值貢獻幾乎消失,使LSBC足以成為中溫電解質。在不同的燒結條件下,晶界活化能大於晶粒活化能。當燒結溫度1400 oC,晶界所貢獻的活化能就不再改變,約0.90 eV,晶粒的活化能約0.84 eV。在晶粒中氧空缺形成所需要的焓值(Ha)約0.90 eV,在晶粒中氧空缺移動所需要的焓值(Hm)約0.62 eV,足夠低的(Ha + Hm)值,讓氧離子傳導效率提高。
Ba0.5Sr0.5FeO3 (BSF)陰極材料在1150 oC持溫6小時可獲得相對純相結構,BSF鐵系陰極材料對於CO2以及潮濕環境有靈敏反應,半有機法製備的核殼BSF可以減緩環境的影響,增益電性與電催化特性。1150 oC燒結的核殼陰極,隨Ce的包覆,對BSF有穩定Fe-O結構效果,FTIR證明Ce殼層可避免水合氧化鐵的產生。當Ce的包覆計量達到10 mol%以上,將析出含鈰二次相。隨Ce包覆量增加,在空氣中量測的電子傳導與離子傳導轉換溫度(Tc) 510C將移至較高溫,BSF-15 mol%Ce可獲得最高直流導電率;15 mol%Ce以上披覆量接近LSBC電解質的熱膨脹係數。AC阻抗分析證實15 mol%Ce以上披覆量能有效降低BSF/LSBC界面阻抗與陰極之擴散阻抗。1150 oC共燒的BSF-20 mol%Ce/LSBC/Pt半電池在操作溫度750 oC,核殼陰極半電池的開路電位約0.8 V,功率密度可以達到250 mW/cm2。
La0.3Sr0.7TiO3 (LST)核殼陽極不論氧化或還原燒結LST-x mol%Ce (x=0.75, 1.5, 3, 6, 12),皆會使Ce擴散進入LST核之晶格中,愈高燒結溫度有愈高的Ce擴散量,還原燒結比氧化燒結可得到更高的Ce擴散量。Raman及XPS分析1300 C以及1500 C燒結之核殼陽極,擴散進入LST核晶格中的Ce,空氣氧化燒結為Ce4+,活性碳還原燒結為Ce3+。氧化燒結的LST-x mol%Ce核殼結構呈現結晶CeO2殼層與結晶LST核的清晰核殼界面;而還原燒結的LST-x mol%Ce核殼結構呈現結晶CeO2殼層、非晶擴散層與結晶LST核的三區核殼界面。核殼陽極不管是氧化或還原燒結,導電率隨披覆量的增加而增加。兩者的差異在於氧化燒結塊材在披覆超過3 mol%計量後,導電率就會反轉下降,還原燒結則是隨披覆量一直提升。核殼陽極以LST-3 mol%Ce在還原環境下,擁有最佳導電性與最低極化阻抗。750C量測的LST-x mol%Ce/LSBC/Pt陽極半電池(1300 oC共燒)可以有效提升發電功率與開路電位;與純陽極結構半電池相比較,核殼陽極半電池達到3.5倍峰值功率的增進。
本研究BSF-20 mol%Ce/LSBC/LST-3 mol%Ce全陶瓷電池擁有最佳的發電效率。AC交流阻抗分析得知此全電池的陰極極化阻值貢獻大於陽極。500m厚度電解質支撐的全電池,具有核殼陰陽極改善了與電解質的界面燒結阻抗問題以及延伸電極與電解質三相區間,增進擴散反應。在800 oC操作溫度下,全陶瓷電池LST-3 mol%Ce/LSBC/BSF-20 mol%Ce得到開路電壓0.8 V,發電峰值功率約355 mW/cm2。

關鍵字:鈰基電解質、BSF-Ce核殼陰極、LST-Ce核殼陽極、中溫固態氧化物燃料電池
Solid oxide fuel cell (SOFC) converts chemical energy to electrical energy directly, it is different from Carnot cyclic internal combustion engine needing multiple mechanical processes. The SOFC components compose ceramic structures including electrolyte, cathode and anode. The efficiency of SOFC is about 55% larger than trandtional internal combustion engine. This dissertation is focused on investigating materials of intermediate-temperature solid oxide fuel cell (ITSOFC) which is operated among 500~800 oC.
The oxygen ions conducting multiple elements doped ceria (LSBC) is utilized as electrolyte for cell support. The solid state oxides prepared electrolyte was densified by conventional high temprature sintering. The conductivity arrives to 0.01 S/cm at 650 oC in this study. The AC impedances of grains and grain boundaries (GB) in electrolyte and of metallic electrode indicate the most important impedance of grain boundaries. LSBC electrolyte has 95% relative density after 1400 oC sintering. The GB impedance almost disappears when the operation temperature higher than 550 oC. This approves the LSBC to be an electrolyte of intermediate temperature operation. The GB activation energy is higher than grain activation energy in various sintering conditions. The GB activation energy is hardly changed as 0.90 eV when the sintering temperature over 1400 oC. The gain activation energy is 0.84 eV. The activation energy of grain affects oxygen vacancies conducting behavior. The formation enthalpy (Ha) and migration enthalpy (Hm) of oxygen vacancy were calculated by Ln(T)-(1/T) data. The Ha in grains is about 0.90 V. The Hm in grains is about 0.62 V. Such enough low value of (Ha + Hm) promotes high oxygen ions conducting efficiency.
Barium strontium ferrate (Ba0.5Sr0.5FeO3, BSF) cathode material is almost obtained pure pseudo-cubic phase while sintered at 1150 oC. The BSF material is sensivitive to moisture and carbon dioxide environment. It results in structure instability. The core-shell cathode of BSF-x mol%Ce prepared by semi-organic method can solve the above mentioned problems. Ce-coated BSF obtained stable Fe-O bonding. The FTIR analyses prove Ce-coating to avoid generation of hydrous iron oxides. When Ce-coating amount is over 10 mol%, the Ce-contained second phase will be segregated. The transition temperature (Tc ~ 510 C) measured in air atmosphere that represents the transition of electronic to ionic conduction shifts to high temperature with high Ce-coatings. The best DC conductivity is obtained by BSF-15 mol%Ce. The thermal expansion coefficient (TEC) of core-shell BSF over 15 mol% Ce-coatings matches with LSBC. When the Ce-coating is higher than 15 mol%, the interface impedance of BSF/LSBC and diffusion impedance in cathode can be reduced according to the AC-impedance analyses. For 1150 oC co-fired half-cell of BSF-20 mol%Ce/LSBC/Pt operated at 750 oC, the open circuit voltage of half-cell is about 0.8 V and the peak power densty is about 250 mW/cm2.
The semi-organic method prepared core-shell structure of La0.3Sr0.7TiO3 (LST)-x mol%Ce (x=0.75, 1.5, 3, 6, 12) either sintered in oxidation or reduction atmosphere, the Ce component diffuses into the core lattice of LST. The more sintering temperature is higher, the more Ce diffuses. Also, high content of Ce in LST is obtained in reduction sintering. The core-shell anode sintered at 1300 C and 1500 C analyzed by Raman and XPS shows that the Ce valences in LST lattice are Ce4+ by air oxidation sintering and Ce3+ by activated carbon reduction sintering. The oxidation sintered LST-x mol%Ce core-shell structure exhibits crystallized CeO2 shell and crystallized LST core with two intimately core-shell interface. However, there are three regions in redcuction sintered core-shell LST-x mol%Ce structure including crystallized CeO2 layer, amorphous zone and crystallized LST core. The conductivity of core-shell anode increases whether oxidation sintering or reduction sintering. The lowest impedance is obtained for LST-3 mol%Ce after reduction treatment. The 1300 oC co-fired half-cell of LST-x mol%Ce/LSBC/Pt has 3.5 times higher peak power density than half-cell without core-shell anode.
The best peak power density is achieved by BSF-20 mol%Ce/LSBC/LST-3 mol%Ce full ceramic cell. The cathode polarization impedance is more imprtant than anode contribution investigated by AC impedance analyses. The 500 m thick LSBC electrolyte suppoted cell with core-shell anode and cathode improves interface sintering mismatching, three phase boundary extension and gas diffusion reaction. LST-3 mol%Ce/LSBC/BSF-20 mol%Ce single cell achieves open circuit voltage of 0.8 V and peak power density of 355 mW/cm2 under operation temperature of 800 oC.

Keywords: ceria-based electrolyte, BSF-Ce core-shell cathode, LST-Ce core-shell anode, intermediate-temperature solid oxide fuel cell (ITSOFC)
目錄
摘 要.....................................................I
Abstract.................................................III
第一章 導論.................................................1
第二章 文獻回顧.............................................4
2.1 固態氧化物燃料電池.......................................4
2.2 電解質材料..............................................7
2.2.1 鎵酸鑭鈣鈦礦結構為主的電解質............................7
2.2.2 氧化鉍螢石結構為主的電解質..............................7
2.2.3 氧化鈰螢石結構為主的電解質..............................8
2.2.4 氧化鈰電解質的傳導機制.................................11
2.2.5 多元素摻雜氧化鈰與氧化鋯機制............................12
2.3 陰極材料...............................................19
2.4 陽極材料...............................................27
第三章 實驗方法及材料特性分析.................................39
3.1 本研究實驗製程與分析方法之介紹............................39
3.2 實驗所需要藥品與相關儀器.................................39
3.2.1 藥品材料.............................................39
3.2.2 本研究相關儀器設備....................................40
3.3 基礎塊材試片與電池架構製配...............................40
3.3.1 (La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891電解質製備.....40
3.3.2 Ba0.5Sr0.5FeO3陰極製備..............................41
3.3.3 La0.3Sr0.7TiO3陽極製備..............................42
3.3.4 核殼陰陽極粉體製備...................................42
3.3.5 Ba0.5Sr0.5FeO3 (或La0.3Sr0.7TiO3)/(La0.75Sr0.2Ba0.05)
0.175Ce0.825O1.891/Pt半電池製備...........................43
3.3.6 Ba0.5Sr0.5FeO3/(La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891
/La0.3Sr0.7TiO3全電池製備.................................43
3.4 基礎材料特性分析.......................................44
3.4.1 晶相結構特性分析.....................................44
3.4.2 微結構特性分析.......................................44
3.4.3 相對密度測試分析.....................................44
3.4.4 粒徑特性特性分析.....................................44
3.4.5 材料熱分析特性分析...................................45
3.4.6 材料分子間鍵結特性分析................................45
3.4.7 材料分子間振動特性分析................................45
3.4.8 材料熱膨脹係數特性分析................................45
3.4.9 直流電性特性分析.....................................45
3.4.10 交流阻抗特性分析....................................45
3.4.11 電池功率與阻抗測試分析...............................45
3.5 電池功率測試架構圖.....................................46
第四章 多元摻雜氧化鈰基電解質LSBC之製備及其特性................47
4.1 熱重/熱差特性分析......................................47
4.2 晶相鑑定特性分析.......................................48
4.2.1電解質粉體晶相鑑定特性分析.............................48
4.2.2電解質塊材晶相鑑定特性分析.............................48
4.3 微結構鑑定特性分析.....................................49
4.4 基礎電性鑑定分析.......................................51
4.4.1 直流電性分析.........................................51
4.4.2 交流電性分析.........................................52
4.5 多元摻雜氧化鈰基電解質(LSBC)微結構與電性討論...............55
4.6 結語..................................................56
第五章 核殼鈣鈦礦BSF陰極與LSBC電解質之半電池製備及其界面特性.....58
5.1 熱重/熱差特性分析......................................58
5.2 純陰極材料晶相/微結構特性鑑定分析........................59
5.2.1 陰極粉體晶相鑑定分析.................................59
5.2.2 陰極塊材晶相/微結構鑑定分析...........................60
5.2.3 陰極塊材微結構穩定性分析..............................61
5.3 核殼陰極材料晶相/微結構特性鑑定分析......................62
5.3.1 核殼陰極粉體微結構鑑定分析............................62
5.3.2 核殼陰極塊材晶相結構鑑定分析..........................63
5.3.3 核殼陰極塊材微結構鑑定分析............................64
5.3.4 核殼陰極塊材相對密度特性分析..........................65
5.3.5 核殼陰極塊材微結構穩定性分析..........................66
5.4 核殼陰極材料電性鑑定分析................................67
5.5 核殼陰極材料半電池特性分析..............................68
5.5.1 核殼陰極結合電解質之發電效率評估.......................68
5.5.2 核殼陰極結合電解質之半電池複阻抗分析....................69
5.5.3 核殼陰極結合電解質之半電池熱膨脹係數與結構燒結黏附分析.....70
5.5.4 核殼陰極結合電解質之半電池最佳效率分析...................72
5.6 核殼陰極結構分析討論....................................73
5.7 結語..................................................75
第六章 核殼鈣鈦礦LST陽極與LSBC電解質之半電池製備及其界面特性.....76
6.1 LST熱重/熱差特性與晶相分析...............................76
6.2 核殼陽極材料晶相/微結構特性鑑定分析.......................77
6.2.1 核殼陽極粉體晶相/微結構鑑定分析........................77
6.2.2 核殼陽極塊材晶相結構/微結構鑑定分析....................79
6.2.3 核殼陽極塊材導電性鑑定分析............................82
6.2.4 核殼陽極燒結塊材微結構鑑定分析........................83
6.3 核殼陽極塊材Ce價數鑑定分析..............................85
6.3.1 利用能階軌域與晶體振動方式鑑定Ce殼層擴散至LST之價數變化.85
6.3.2 Ce殼層擴散至LST內部晶格之分析.........................87
6.4 核殼陽極對稱電極特性分析................................88
6.5 核殼陽極半電池特性鑑定分析..............................89
6.6 核殼陽極結構分析討論...................................91
6.7 結語..................................................93
第七章 核殼鈣鈦礦電極與LSBC電解質共燒之全電池製備及其界面特性..94
7.1 BSF-x mol%Ce (x=0, 20)/LSBC/LST-y mol%Ce (y=0, 3)之全電池電性檢測................................................94
7.1.1 BSF/LSBC/LST (電池1)................................94
7.1.2 BSF-20 mol%Ce/LSBC/LST (電池2)......................96
7.1.3 BSF-20 mol%Ce/LSBC/LST-3 mol%Ce (電池3).............97
7.1.4 BSF-x mol%Ce (x=0, 20)/LSBC/LST-y mol%Ce (y=0, 3)全電池微結構..................................................98
7.2 全電池結構特性分析討論..................................99
7.3 結語.................................................100
第八章 結論與未來展望.....................................101
未來展望.................................................102
參考文獻.................................................103
著作發表.................................................111

圖目錄
圖1-1. 研究架構............................................3
圖2-1. 固態氧化物燃料電池的工作反應機制........................5
圖2-2. 固態氧化物燃料電池理想電位與實際電位的關係圖..............5
圖2-3. 固態氧化物燃料電池的基礎幾何結構........................6
圖2-4. 不同類型中溫電解質隨溫度變化的氧離子傳導率................7
圖2-5. 氧化鉍不同結構相之氧離子傳導隨溫度改變之分佈圖.............8
圖2-6. 摻雜二、三價元素的離子半徑與氧化鈰電解質氧離子導電率的關係圖.........................................................9
圖2-7. 不同三價元素的離子半徑相對應鍵結能的關係圖...............10
圖2-8. 不同二價元素的離子半徑相對應鍵結能的關係圖...............11
圖2-9. 二價元素的離子摻雜與氧空缺形成的關係圖...................12
圖2-10. 1000 oC下量測的導電率與效率指數的關係, ○1Y2O3 (YO1.5Vo0.5)單晶 (Vo, 氧空缺),○2(Ce0.25Y0.75)2O3.25,○3(Ce0.30Y0.70)2O3.30, ○4(La0.05Ce0.25Y0.7)2O3.25, ○5(La0.10Ce0.25Y0.65)2O3.25, ○6(La0.15Ce0.25Y0.60)2O3.25, ○7(La0.1Sr0.006Ce0.25Y0.644)2O3.24(4), ○8(La0.1Sr0.0125Ce0.25Y0.6375)2O3.23(7)...................13
圖2-11. 1000 oC下量測的阿瑞尼斯活化能與效率指數的關係, ○1: Y2O3 (YO1.5Vo0.5)單晶 (Vo, 氧空缺),○2:(Ce0.25Y0.75)2O3.25,○3:(Ce0.30Y0.70)2O3.30, ○4:(La0.05Ce0.25Y0.7)2O3.25,○5:(La0.10Ce0.25Y0.65)2O3.25,○6:(La0.15Ce0.25Y0.60)2O3.25, ○7: (La0.1Sr0.006Ce0.25Y0.644)2O3.24(4),○8: (La0.1Sr0.0125Ce0.25Y0.6375)2O3.23(7)....................13
圖2-12. 阿瑞尼斯活化能與效率指數的關係:不同離子半徑對活化能分佈 .........................................................14
圖2-13. 不同陽離子半徑相對第一、第二、第三鄰近位置鍵結能分佈圖 .........................................................14
圖2-14. 在溫度800 oC空氣環境下之相對效率指數與導電率的關係: 1-Sm0.2Ce0.8O1.9, 2-Sm0.25Ce0.75O1.875, 3-(Sm0.5Ca0.5)0.175Ce0.825O1.87, 4-Sm(0.5Ca0.5)0.2Ce0.8O1.85, 5-(Sm0.5Ca0.5)0.225Ce0.775O1.84, 6-(Sm0.5Ca0.5)0.25Ce
0.75O1.81, 7-(Sm0.936Cs0.06Li0.004)0.2Ce0.8O1.89, 8-(Sm0.936Cs0.06Li0.004)0.225Ce0.775O1.88, 9-(Sm0.936Cs
0.06Li0.004)0.25Ce0.75O1.87, 10-(Sm0.936Cs0.06Li0.004)
0.275O1.85, 11-La0.125Ce0.875O1.94, 12-La0.15Ce0.85O1.925, 13-La0.175Ce0.825O1.91, 14-(La0.77Sr0.2Ba0.03)0.15Ce0.85
O1.892, 15-(La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891.........15
圖2-15. 操作溫度800 oC下,氧分壓與導電率的關係圖; -Sm0.2Ce0.8
O1.9, -(Sm0.936Cs0.06Li0.004)0.25Ce0.75O1.87,-La0.175
Ce0.825O1.91,-(La0.75Sr0.2Ba0.03)0.175Ce0.825O1.891....15
圖2-16. (a) Sm0.2Ce0.8O1.9放電功率圖: -1000,-900,-800,▽-700....................................................16
圖2-16. (b) (La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891放電功率圖: -1000, -900,-800, ▽-700............................16
圖2-17. 三價陽離子摻雜產生的空缺分別佔據不同的位置.............17
圖2-18. 螢石結構伴隨氧空缺形成C-型結構.......................17
圖2-19. 穩定的缺陷叢聚結構,(a)摻雜一個兩價的陽離子,(b)摻雜兩個兩價的陽離子,(c)摻雜三個兩價的陽離子,(d)摻雜四個兩價的陽離子,(e)摻雜五個兩價的陽離子,(f)摻雜四個兩價的陽離子,陽離子座落在NN的位置上會伴隨不同的氧空缺..................................18
圖2-20. (a)對稱的啞鈴型結構有相對高的鍵結能,主要是由六組等腰三角形構成,(b)一個鏈鎖模組的活化能有相對低的鍵結能,由兩個四面體構成 ..........................................................18
圖2-21. 相同的氧空缺下形成不同的鍵結能,進而產生不同的內部傳導模組........................................................19
圖2-22. 陰極不同傳導形式: (a)電極表面路徑,(b)電極內部路徑,(c)電解質表面路徑.............................................20
圖2-23. 氧氣在不同陰極鈣鈦礦結構的有效反應常數...............21
圖2-24. Ba0.5Sr0.5Co1-yFeyO2.875隨著Fe的變化量y改變,相對形成氧空缺所需的能量...........................................22
圖2-25. Ba1-xSrxCo0.8Fe0.2O3-δ在不同溫度下的相對導電特性....22
圖2-26. Ba1-xSrxCo1-yFeyO2.875的氧空缺遷移能障與電子因素(在A-site與O之間的距離為參考下),以及電子傳導特性(形成氧空缺所需要的焓值),分別有Ba0.5Sr0.5FeO2.875(藍色曲線),Ba0.5Sr0.5Co0.2Fe
0.8O2.875(黑色曲線),Ba0.5Sr0.5Co0.8Fe0.2O2.875(紅色曲線),Ba0.5Sr0.5CoO2.875(綠色曲線)與SrCo0.8Fe0.2O2.875(橙色曲線).....................................................24
圖2-27. 以氫氣當燃料,空氣當氧化劑,操作溫度800 oC下之交流阻抗分析,(a) Ba0.5Sr0.5Co0.8Fe0.2O2.875/YSZ/Ni-YSZ電池,及對YSZ+GDC電解質之各種GDC燒結溫度,(b) 1100 oC,(c) 1200 oC,(d) 1250 oC,(e) 1300 oC,(f) 1400 oC.........................25
圖2-28. Ba0.5Sr0.5Co0.8Fe0.2O2.875陰極與SDC電解質利用固態法混合成複合式陰極.............................................26
圖2-29. X-ray繞射圖譜,在空氣下煆燒之粉體,(A) SDC-900 oC,(B) BSCF-900 oC,(C) BSCF與SDC混合後的粉體,(D) BCSF與SDC在900 oC煆燒,(E) BSCF與SDC在950 oC煆燒,(F) BSCF與SDC在1000 oC煆燒,(G) BSCF與SDC在1050 oC煆燒,(H) BSCF與SDC在1100 oC煆燒.....26
圖2-30. Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) + 電解質Sm0.2Ce0.8
O1.9 (SDC)在不同量測溫度500-600 oC的電壓與電流以及功率密度分佈圖........................................................26
圖2-31. 不同燒結溫度Ni/ZrO2(Y2O3)陶金試片在1000 oC測試溫度下的導電率......................................................27
圖2-32. Ni/YSZ陽極三相點反應區域...........................28
圖2-33. 在1000 oC的測試溫度,Ni/YSZ陽極在不同含硫氣氛下的交流阻抗分析結果................................................28
圖2-34. Ni/YSZ陽極在定電流下,添加不同含硫氣氛影響下的過電位隨反應時間圖..................................................29
圖2-35. Ni/YSZ陽極在定電流下,移除不同含硫氣氛影響下的過電位隨反應時間圖.....................................................29
圖2-36. 理想的SrTiO3鈣鈦礦單位晶體結構.......................30
圖2-37. La0.2Sr0.8TiO3與Y0.08Sr0.92TiO3兩種材料在氫氣下的導電率........................................................30
圖2-38. 在不同的氧分壓之下,LaxSr1-3x/2TiO3緻密試片(x=0.4◆, 0.5▉, 0.6▲)的導電率......................................31
圖2-39. (La0.3Sr0.7)1-xTiO3-在(x=0, 0.03, 0.05, 0.07, 0.1)之A-site缺陷下,不同溫度50-950 oC的電特性分析...............31
圖2-40. (La0.3Sr0.7)1-xTiO3-在(x=0, 0.03, 0.05, 0.07, 0.1)之A-site缺陷下,不同溫度50-950 oC的離子特性.................32
圖2-41. Ce元素摻雜SrTiO3,在950 oC隨氧分壓改變下的導電率.....32
圖2-42. (A) Sr0.95Ce0.05TiO3δ,(B) Sr0.925Ce0.05TiO3δ熱膨脹隨溫度之變化(實線是在空氣下量測,圓形符號是在CO-CO2的還原氣氛下量測)....................................................33
圖2-43. La0.33Sr0.67TiO3(LST)以及La0.23Ce0.1Sr0.67TiO3(LSCT)在空氣與2%的氫氣/氬氣下之X-ray繞射圖譜......................33
圖2-44. La0.23Ce0.1Sr0.67TiO3(LSCT)在還原燒結後將試片在1200 oC氧化的微結構...............................................34
圖2-45. 將La0.23Ce0.1Sr0.67TiO3(LSCT)試片在1200 oC氧化後,在2%氫氣/氬氣中850 oC低溫還原的微結構.........................34
圖2-46. La0.33Sr0.67TiO3(LST), La0.23Ce0.1Sr0.67TiO3(LSCT)以及LSCT-oxide1200 oC的試片在900 oC下針對在10:1:9 CH4/H2/N2的混合氣氛,對於氫氣的生成量....................................35
圖2-47. 不同形式的鈦酸鍶陽極材料在97%H2/3%H2O於操作溫度800 oC的電阻隨時間之變化...........................................35
圖3-1. 電解質製備流程圖....................................41
圖3-2. 陰極製備流程圖......................................41
圖3-3. 陽極製備流程圖......................................42
圖3-4. 核殼陰/陽極製備流程圖................................42
圖3-5. 陰極半電池製備流程圖.................................43
圖3-6. 陽極半電池製備流程圖.................................43
圖3-7. 全電池製備流程圖....................................44
圖3-8. 電池檢測架構形貌....................................46
圖4-1. 固態氧化物(SS)法所製備LSBC粉體之熱分析結果.............47
圖4-2. SS法LSBC試片傳統煆燒之XRD圖譜........................48
圖4-3. SS法LSBC試片傳統燒結之XRD圖譜........................49
圖4-4. SS法LSBC試片煆燒粉體之SEM照片........................50
圖4-5. LSBC傳統燒結的FESEM照片,(a) 1300 C/6h (左圖:表面,右圖:斷面).................................................50
圖4-5(b). 1400 C/6h (左圖:表面,右圖:斷面)..............51
圖4-5(c). 1500 C/6h (左圖:表面,右圖:斷面)..............51
圖4-6. 450-750 oC之LSBC電解質試片氧離子導電測試.............52
圖4-7. 在低溫200 oC量測LSBC電解質試片晶粒與晶界交流阻抗分析...53
圖4-8. 在中低溫度300-600 oC量測CS-1400 oC電解質試片晶粒與晶界交流阻抗分析................................................54
圖4-9. 在低溫300 oC,施加偏壓後,量測鑑定CS-1400 oC電解質試片的晶界阻抗..................................................54
圖4-10. 導電率對應溫度下計算出Hm與Ha的焓值(Ha:氧空缺形成所需要的焓值,Hm:氧空缺移動所需要的焓值)............................56
圖5-1. Ba0.5Sr0.5FeO3熱重與熱差分析圖譜....................59
圖5-2. Ba0.5Sr0.5FeO3煆燒粉體X-ray繞射分析圖譜..............60
圖5-3. Ba0.5Sr0.5FeO3陰極燒結塊材X-ray繞射分析圖譜..........60
圖5-4. Ba0.5Sr0.5FeO3陰極燒結塊材剖面微結構分析,(a) 1100 oC/6h,(b) 1150 oC/6h,(c) 1200 oC/6h,(d) 1300 oC/6h.....61
圖5-5. BSF塊材燒結1150 oC/6h,(a)表面的顏色,(b)受潮表面顏色;(c)燒結後內部微結構,(d)受潮內部微結構......................62
圖5-6. BSF-x-mol%Ce煆燒800 oC持溫4小時的微結構鑑定,(a) BSF,(b) BSF-5 mol%Ce,(c) BSF-10 mol%Ce,(d) BSF-15 mol%Ce,(e) BSF-20 mol%Ce............................................63
圖5-7. BSF-x mol%Ce (x=0, 5, 10, 15, 20)塊材燒結1150 oC持溫6小時的(a)晶相鑑定,(b)繞射角45-48o之放大XRD圖譜.............64
圖5-8. 1150 oC/6h傳統燒結後試片之掃描式電子顯微鏡分析結果,(a) BSF,(b) BSF-5 mol%Ce,(c) BSF-10 mol%Ce,(d) BSF-20 mol%Ce;背向式電子繞射分析結果,(e) BSF,(f) BSF-20 mol%Ce..........65
圖5-9. BSF-x mol%Ce燒結1150 oC持溫6小時的相對密度...........65
圖5-10. BSF塊材燒結1150 oC/6h,(a) BSF-5 mol%Ce內部結構,(b) BSF-5 mol%Ce受潮內部結構;(c) BSF-10 mol%Ce內部結構,(d) BSF-10 mol%Ce受潮內部微結構....................................66
圖5-11. BSF與BSF核殼結構在燒結1150 oC後與試片泡水1小時後的傅利葉轉換紅外光譜(FTIR).........................................67
圖5-12. BSF與BSF核殼結構陰極在不同溫度下的DC導電率...........68
圖5-13. BSF-x mol% Ce (x=0, 5, 10, 15, 20)/LSBC/Pt半電池,600 °C溫度下,電壓-電流(V-I)與功率密度-電流密度(P-I)量測曲線之比較......................................................69
圖5-14. BSF-x mol% Ce (x=0, 5, 10, 15, 20)/LSBC/Pt半電池,600°C溫度下,複阻抗(AC)量測曲線之比較.......................70
圖5-15. BSF-x mol% Ce (x=0, 5, 10, 15, 20)核殼陰極、LSBC電解質,隨溫度變化的熱膨脹係數量測曲線之比較.....................71
圖5-16. BSF-x mol%Ce (x=0, 5, 10, 15, 20)/LSBC半電池元素分析,(紅色:Ce元素,綠色:Fe元素,金色:O元素)......................72
圖5-17. BSF-x mol% Ce (x=0, 5, 10, 15, 20)/LSBC/Pt半電池,750 °C溫度下,最大發電功率比較..................................73
圖5-18. BSF-x mol%Ce (x=0, 5, 10, 15, 20)/LSBC/Pt半電池,600 °C溫度下,複阻抗(AC)擬合曲線比較............................74
圖5-19. BSF-x mol%Ce (x=0, 5, 10, 15, 20)/LSBC/Pt半電池,600 °C溫度下,複阻抗(AC)等效電路圖..............................75
圖6-1. La0.3Sr0.7TiO3陽極TG/DSC分析圖......................77
圖6-2. LST陽極在1100-1300 oC煆燒之X光繞射圖譜...............77
圖6-3. LST(core)-x CeO2(shell) (x=0; 0.75; 1.5 mol%Ce)陽極在800 oC煆燒後之x光繞射圖譜..................................78
圖6-4. LST(core)-x CeO2(shell) (x=3.0; 6.0; 12.0 mol%Ce)陽極在800 oC煆燒後之x光繞射圖譜................................78
圖6-5. LST陽極1300 oC/3h熱處理後之FESEM影像................79
圖6-6. LST(core)-CeO2(shell)陽極粉體在800 oC/4h煆燒後之FESEM圖像,(a) 1.5mol%Ce,(b) 3.0 mol%Ce,(c) 6.0 mol%Ce,(d) 12.0 mol%Ce....................................................79
圖6-7. LST-x mol%Ce (x=0, 1.5, 3, 6, 12)陽極在1300 oC空氣中燒結之XRD圖.................................................80
圖6-8. LST-x mol%Ce (x=0, 1.5, 3, 6, 12)陽極在1500 oC空氣中燒結之XRD圖.................................................80
圖6-9. LST-x mol%Ce (x=0, 1.5, 3, 6, 12)陽極在1300 oC活性碳中燒結之XRD圖...............................................81
圖6-10. LST-x mol%Ce (x=0, 1.5, 3, 6, 12)陽極在1500 oC活性碳中燒結之XRD圖.............................................81
圖6-11. LST-x mol%Ce (x=0, 1.5, 3, 6)陽極於空氣與活性碳氣氛中燒結之晶格參數變化............................................82
圖6-12. 1500 oC空氣之氧化氣氛下燒結的純LST與各種LST-x mol%Ce (x=1.5, 3, 6)陽極,在5%H2/Ar氣氛下量測隨溫度變化之DC導電率.....83
圖6-13. 1500 oC活性碳還原氣氛下燒結之純LST與各種LST-x mol%Ce (x=1.5, 3, 6)陽極,在5%H2/Ar氣氛下量測隨溫度變化之DC導電率.....83
圖6-14(a). 空氣之氧化氣氛下於溫度1300 oC/6h燒結之純LST與各種LST-x mol%Ce (x=1.5, 3, 6, 12)陽極..............................84
圖6-14(b). 空氣之氧化氣氛下於溫度1500 oC/6h燒結之純LST與各種LST-x mol%Ce (x=1.5, 3, 6, 12)陽極..............................84
圖6-14(c). 活性碳之還原氣氛下於溫度1300 oC/6h燒結之純LST與各種LST-x mol%Ce (x=1.5, 3, 6, 12)陽極............................85
圖6-14(d). 活性碳之還原氣氛下於溫度1500 oC/6h燒結之純LST與各種LST-x mol%Ce (x=1.5, 3, 6, 12)陽極............................85
圖6-15. LST-x mol%Ce (x=0, 1.5, 3.0, 6.0)陽極在不同氣氛燒結1300 oC後之組成元素Raman鍵結光譜,(a)空氣之氧化氣氛,(b)活性碳還原氣氛.......................................................86
圖6-16. LST-3 mol%Ce陽極個別在氧化還原氣氛燒結1500 oC後之組成元素XPS鍵結光譜...............................................87
圖6-17. 氧化氣氛燒結的LST-3 mol%Ce核殼陽極之高解析度穿透電子顯微鏡(HRTEM)分析,可清晰分辨核殼界面從CeO2殼層至LST核結晶區的轉變........................................................88
圖6-18. 還原氣氛燒結的LST-3 mol%Ce核殼陽極之高解析度穿透電子顯微鏡(HRTEM)分析,從CeO2殼層至核的內部,出現非晶區、擴散區與結晶區的轉變........................................................88
圖6-19. LST-x mol%Ce (x=0, 1.5, 3.0, 6.0)陽極個別在空氣下氧化氣氛1300 oC燒結後,再於操作溫度(a) 700 oC,(b) 750 oC還原氣氛下檢測其對稱電極複數阻抗..........................................89
圖6-20. 在H2/Air的氣氛下,LST與各種LST-x mol%Ce (x=1.5, 3, 6)陽極半電池之發電效率,(a)操作溫度700 oC,(b)操作溫度750 oC.......90
圖6-21. LST-x mol%Ce (x=0, 1.5, 3.0, 6.0)/LSBC/Pt陽極半電池剖面之SEM圖.................................................91
圖6-22. LST-x mole%Ce (x=0,1.5,3,6)/LSBC/Pt陽極半電池,700°C溫度下,複阻抗(AC)曲線之擬合比較(虛線部份)......................92
圖7-1. BSF/LSBC/LST (電池1)在700-800 oC溫度下,電壓-電流(V-I)與功率密度-電流密度(P-I)量測曲線之比較.........................95
圖7-2. BSF/LSBC/LST (電池1)在700-800 oC溫度下,開路電位的交流阻抗分析.....................................................95
圖7-3. BSF-20 mol%Ce/LSBC/LST (電池2)在700-800 oC溫度下,電壓-電流(V-I)與功率密度-電流密度(P-I)量測曲線之比較...............96
圖7-4. BSF-20 mol%Ce/LSBC/LST (電池2)在700-800 oC溫度下,開路電位的交流阻抗分析...........................................96
圖7-5. BSF-20 mol%Ce/LSBC/LST-3 mol%Ce (電池3)在700-800 oC溫度下,電壓-電流(V-I)與功率密度-電流密度(P-I)量測曲線之比較......97
圖7-6. BSF-20 mol%Ce/LSBC/LST-3 mol%Ce (電池3)在700-800 oC溫度下,開路電位的交流阻抗分析.................................97
圖7-7. BSF/LSBC/LST-3 mol%Ce (電池1)之全電池剖面微結構.......98
圖7-8. BSF-20 mol%Ce/LSBC/LST-3 mol%Ce (電池3)之全電池剖面微結構........................................................98
圖7-9. LST-x mol%Ce (x=0, 3)/LSBC/BSF-y mol%Ce (y=0, 20)燃料電池,750 oC溫度之複阻抗(AC)擬合比較(虛線部份).................99

表目錄
表2-1. 不同元素離子半徑與熱焓的關係...........................10
表2-2. 鈣鈦礦陰極材料的基礎特性:熱膨脹係數、電子傳導率、離子傳導率........................................................23
表2-3. 不同電解質材料在800 oC的熱膨脹係數、離子傳導率...........24
表2-4. LST陽極系列在不同溫度下與氧化與還原氣氛下的離子傳導率.....36
表2-5. LST陽極系列在不同溫度下與摻有硫化氣氛下的功率結果.........37
表2-6. LST複合陽極系列在不同溫度下的功率結果...................38
表3-1. 實驗藥品材料.........................................39
表3-2. 實驗儀器設備.........................................40
表4-1. SS法LSBC雷射粒俓多次分析結果..........................50
表4-2. SS法製備燒結LSBC之相對密度分析結果.....................51
表4-3. 電解質內部活化能與相對的焓值...........................55
表5-1. 核殼陰極半電池交流阻抗之RC電路分析數據結果 (600 oC)......74
表6-1. 核殼陽極半電池交流阻抗RC電路分析數據結果(700 oC).........92
表7-1. 全電池實驗規劃參數....................................94
表7-2. 全電池交流阻抗RC等效電路分析數據結果(750 oC)...........100
[01] G. J. K. Acres, “Recent advances in fuel cell technology and its applications”, Journal of Power Sources, vol. 100, pp. 60-66, 2001.
[02] M. L. Perry and T. F. Fuller, “A historical perspective of fuel cell technology in the 20th century”, Journal of The Electrochemical Society, vol. 149, pp. S59-S67, 2002.
[03] T. Mori, J. Drennan, Y. R Wang, J. G. Li, and T. Ikegami, "Influence of nano-structure on electrolytic properties in CeO2 based system”, Journal of Thermal Analysis and Calorimetry, vol. 70, pp. 309–319, 2002.
[04] T. Mori , J. Drennan , J. H. Lee , J. G. Li , and T. Ikegami, “Oxide ionic conductivity and microstructures of Sm-or La doped CeO2-based systems”, Solid State Ionics, vol. 154-155, pp. 461-466, 2002.
[05] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. Liu, “Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, vol. 52, pp. 7343–7351, 2007.
[06] P. R. Slater, D. P. Fagg and J. T. S. Irvine, “Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells”, Journal of Materials Chemistry, vol. 7, pp. 2495-2498, 1997.
[07] K. Ahn, S. Jung, J. M. Vohs and R. J. Gorte, “A support layer for solid oxide fuel cells”, Ceramics International, vol. 33, pp. 1065-1070, 2007.
[08] H. A. Taroco, S. T. Paula Andrade, M. C. Brant, R. Z. Domingues, and T. Matencio, “Assembly and electrical characterization of solid oxide fuel cell stacks”, Qumica Nova, vol. 32, pp. 1297-1305, 2009.
[09] J. H. Fergus, X. Rob. Li, D. P. Wilkinson, and J. J. Zhang, Solid oxide fuel cells: materials properties and performance, ELSEVIER, 2009.
[10] S. C. Singhal and K. Kendall, High temperature solid oxide fuel cells: Fundamentals, design, and applications, ELSEVIER, 2003.
[11] K. C. Wincewicz, and J. S. Cooper, “Taxonomies of SOFC material and Manufacturing alternatives”, Journal of Power Sources, vol. 140, pp. 280-296, 2005.
[12] S. P. S. Badwal, “Stability of solid oxide fuel cell components”, Solid State Ionics, vol. 143, pp. 39-46, 2001.
[13] P. Charpentier, P. Fragnaud , D. M. Schleich, and E. Gehain, “Preparation of thin film SOFCs working at reduced temperature”, Solid State Ionics, vol. 135, pp. 373-380, 2000.
[14] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemistry Review, vol. 104 pp. 4845–4865, 2004.
[15] S. Chunwen, S.Ulrich, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007.
[16] X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H.Yoshida, T. Inagaki, K. Miura, “Interface reactions in the NiO–SDC–LSGM system”, Solid State Ionics, vol. 133, pp.153-160, 2000.
[17] X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H.Yoshida, T. Inagaki, K. Miura, “Interface reactions in the NiO–SDC–LSGM system”, Solid State Ionics, vol. 133, pp.153-160, 2000.
[18] K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, “Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere”, Solid State Ionics, vol. 121, pp. 217-224, 1999.
[19] H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide”, Journal of Solid State Chemistry, vol. 26, pp. 265-274, 1978.
[20] H. Inaba, H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, vol. 83, pp.1-16, 1996.
[21] M. Dudek, J. Molenda, “Preparation and properties of CeO2-based electrolytes”, Bulletin Ceramics, vol. 84, pp.177-182, 2004.
[22] R. Gerhardt-Anderson and A. S. Nowick, “Ionic conductivity of CeO2 with trivalent doped of different ionic radii”, Solid State lonics, vol. 5, pp. 547-550, 1981.
[23] J. A. Kilner, “Fast Anion transport in solids”, Solid State Ionics, vol. 8, pp. 201-207, 1983.
[24] A. Tschope, E. Sommer, R. Birringer, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments”, Solid State Ionics vol. 139, pp.255-265, 2001.
[25] A. Tschope, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model”, Solid State Ionics vol. 139, pp.267-280, 2001.
[26] S. Ramesh, V. Prashanth Kumar, P. Kistaiah, and C. V. Reddy, “Preparation characterization and thermal electrical properties of co-doped Ce0.8-xSm0.2CaxO2 materials”, Solid State Ionics, vol. 181, pp. 86-91, 2010.
[27] M. Dudek, W. Bogusz, L. Zych and B. Trybalska, “Electrical and mechanical properties of CeO2-based electrolytes in the CeO2–Sm2O3–M2O3 (M=La ,Y) system”, Solid State Ionics, vol. 179, pp. 164-167, 2008.
[28] Y. P. Fu, C. W. Tseng, and P.-C. Peng, “Effect of bismuth addition on the electrical conductivity of gadolinium-doped ceria ceramics”, Journal of the European Ceramic Society, vol. 28, pp. 85-90, 2008.
[29] M. Dudek, “Ceramic oxide electrolytes based on CeO2—Preparation, properties and possibility of application to electrochemical devices”, Journal of the European Ceramic Society, vol. 28, pp. 965-971, 2008.
[30] X. Q. Sha, Z. Lü, X. Q. Huang, J. P. Miao, Z. G. Liu, X. S Xin, Z. H. Zhang, W. H. Su, “Influence of the sintering temperature on electrical property of the Ce0.8Sm0.1Y0.1O1.9 electrolyte”, Journal of Alloys and Compounds, vol. 433, pp. 274-278, 2007.
[31] S. K. Tadokoro and E. N. S. Muccillo, “Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics”, Journal of the European Ceramic Society, vol. 27, pp. 4261-4264, 2007.
[32] S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun, and S. A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol–gel coating method”, Journal of Power Sources, vol. 110, pp. 222-228, 2002.
[33] D. Hirabayashi, A. Tomita, S. Teranishi, T. Hibino, M. Sanoc, “Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCe1−xSmxO3−α layer for intermediate-temperature SOFCs”, Solid State Ionics, vol.176, pp. 881-887, 2005.
[34] K. Eguchi, T. Setoguchi, T. Inoue, H. Aral, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells”, Solid State Ionics, vol.52, pp. 165-172, 1992.
[35] I. Kosacki, NATO Science Series, “Fuel Cell Technologies—State and Perspectives”, Springer, vol.202, pp. 395-416, 2005.
[36] I. Kosacki, “160 years of fuel cells - impossible becomes possible”, Chemical Letters, pp. 77-101, 2005.
[37] Z. P. Li, T. Mori, J. Zou, and J. Drennand, “Defects clustering and ordering in di- and trivalently doped ceria”, Materials Research Bullitin, vol. 48, pp. 807-812, 2013.
[38] T. Mori, J. Drennan, D. R. Ou, and F. Ye, “Design of high quality doped CeO2 solid electrolytes with nanohetero structure”, Nukleonik, vol. 51, pp. S11-S18, 2006.
[39] T. Mori, J. Drennan, Y. R. Wang, J. G. Li , and T. Ikegami, “Influence of nanostructure on electrolytic properties in CeO2 based system”, Journal of Thermal Analysis and Calorimetry, vol. 70, pp. 309-319, 2002.
[40] J. H. Lee, T. Mori, J. G. Li, T. Ikegami, G. Auchterlonie, J. Drennan, “Improvement of the electrolytic properties of Y2O3-based materials using a crystallographic index”, Solid State Ionics, vol. 138, pp. 277–291, 2001.
[41] J. A. Kilner, “A study of oxygen ion conductivity in doped non-stoichiometric oxides”, Solid State Ionics, vol. 6, pp. 237-252, 1982.
[42] J. A. Kilner, “Fast oxygen transport in acceptor doped oxides”, Solid State Ionics, vol. 129, pp. 13–23, 2000.
[43] F. Ye, T. Mori, D. R. Ou, and A. N. Cormack, “Dopant type dependency of domain development in rare-earth-doped ceria: An explanation by computer simulation of defect clusters”, Solid State Ionics, vol. 180, pp. 1127-1132, 2009.
[44] Z. P. Li, T. Mori, F. Ye, D. R. Ou, and J. Zou, “Ordered structures of defect clusters in gadolinium-doped ceria”, Journal of Chemical Physics, vol. 134, p. 224708, 2011.
[45] F. Ye, T. Mori, J. Zou, D. R. Ou, and J. Drennan, “A structure model of nano-sized domain in Gd-doped ceria”, Solid State Ionics, vol. 180, pp. 1414-1420, 2009.
[46] F. Ye, T. Mori, D. R. Ou, A. N. Cormack, R. J. Lewis, and J. Drennan, “Simulation of ordering in large defect clusters in gadolinium-doped ceria”, Solid State Ionics, vol. 179, pp. 1962-1967, 2008.
[47] Z. P. Li, T. Mori, G. J. Auchterlonie, J. Zou, and J. Drennanc, “Nanodomain formation and distribution in Gd-doped ceria”, Materials Research Bulletin, vol. 47, pp. 763-767, 2012.
[48] Z. P. Li, T. Mori, G. J. Auchterlonie, J. Zou, and J. Drennan, “Direct evidence of dopant segregation in Gd-doped ceria”, Applied Physics Letters, vol. 98, p. 093104, 2011.
[49] J. Fleig , “Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance”, Annual Review Materials Research, vol.33, pp.361–382, 2003.
[50] K. Wang, R. Ran, W. Zhou, H. X. Gu, Z. P. Shaoa, and J. Ahn, “Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Sm0.2Ce0.8O1.9 composite cathode”, Journal of Power Sources, vol. 179, pp. 60-68, 2008.
[51] J. Ovenstone, J.-Il J., J. S. White, D. D. Edwards, and S. T. Misture, “Phase stability of BSCF in low oxygen partial pressures”, Journal of Solid State Chemistry, vol. 181, pp. 576–586, 2008.
[52] W. G. Haije. J. F. Vente, Z. S. Rak, “Performance of functional perovskite membranes for oxygen production”, Journal of Membrane Science, vol. 276, pp. 178-184, 2006.
[53] S. Li, Z. Lü, B. Wei, X. Huang, J. Miao, G. Cao, R. Zhu, W. Su, “A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs”, Journal of Alloys and Compounds, vol. 426, pp. 408-414, 2006.
[54] Z. Duan, M. Yang, A. Yan, Z. Hou, Y. Dong, Y. Chong, M. Cheng, “Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs with a GDC interlayer”, Journal of Power Sources, vol. 160, pp. 57-64, 2006.
[55] Z. P. Shao, S. M. Haile, J. M. Ahn, P. D. Ronney, Z. L. Zhan, and S. A. Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high power density”, Nature, vol. 435, pp. 795-798, 2005.
[56] G. Corbel, S. Mestiri, and P. Lacorre, “Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor”, Solid State Sciences, vol. 7, pp. 1216-1224, 2005.
[57] Z. P. Shao and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, vol. 431, pp. 170-173, 2004.
[58] H. Dong, Z. P. Shao, G. X. Xiong, Y. Cong, W. Yang, “Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion”, Journal of Membrane Science, vol. 183, pp. 181-192, 2001.
[59] Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, and G. Xiong, “Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 oxygen membrane”, Journal of Membrane Science, vol. 172, pp. 177-188, 2000.
[60] J. Nielsen and J. Hjelm, “Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes”, Electrochimica Acta, vol. 115, pp. 31-45, 2014.
[61] Q. L. Liu, K. A. Khor, S. H. Chan, “High-performance low-temperature solid oxide fuel cell with novel BSCF cathode”, Journal of Power Sources, vol.161, pp.123-128, 2006.
[62] E. A. Kotomin, R. Merkle, Y. A. Mastrikov, M. M. Kuklja, and J. Maier, Energy Conversion: Solid Oxide Fuel Cells : First-Principles Modeling of Elementary Processes, 150-186, Wiley, 2013.
[63] L. Wang, R. Merkle, G. Cristiani, “PLD-deposited (Ba,Sr)(Co,Fe)O3-δ thin film microelectrodes: structure aspects and oxygen incorporation kinetics”, ECS Trans. vol. 13, pp. 85–95, 2008.
[64] H. H. Wang, C. Tablet, A. Fedhoff, J. Caro, “Cobalt-free oxygen permeable membrance based on the peroviskite type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ”, Advanced Materials, vol. 17, pp. 1785-1788, 2005.
[65] X. L. Dong, Z. Xu, X. F. Chang, C. Zhang, and W. Jin, “Chemical expansion, crystal structural sStability, and oxygen permeability of SrCo0.4Fe0.6-xAlxO3-δ oxides”, Journal of the American Ceramic Society, vol. 90, pp. 3923-3929, 2007.
[66] T. Nakamura, G. Petzow, and L. J. Gauckler, “Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results”, Materials Research Bulletin, vol. 14, pp. 649-659, 1979.
[67] S. K. Jaiswal, J. K. Kumar, “Sol-gel formation, Mössbauer studies, optical absorption and impedance characteristics of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ powder”, Materials Chemistry and Physics, vol. 136, pp. 28-35, 2012.
[68] S. G. Huang, G. J. Wang, X. H. Sun, C. M. Lei, T. Li, and C. Wang, “Cobalt-free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3−δ as a cathode material for intermediate temperature solid oxide fuel cells”, Journal of Alloys and Compounds, vol. 543, pp. 26-30, 2012.
[69] X. F. Chu, F. Liu, W. C. Zhu, Y. P. Dong, M. F. Ye, and W. Sun, “Cobalt-free composite Ba0.5Sr0.5Fe0.9Ni0.1O3–δ–Ce0.8Sm0.2O2–δ as Ccathode for intermediate temperature solid oxide fuel cell”, Journal of Materials Science & Technology, vol. 28, pp. 828-832, 2012.
[70] W. P. Sun, Z. Shi , S. M. Fang, L. T. Yan, Z. W. Zhu, and W. Liu, “A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode”, International Journal of Hydrogen Energy, vol. 35, pp. 7925-7929, 2010.
[71] X. Y. Lu, Y. Z. Ding, Y. Chen, “Ba0.5Sr0.5Zn0.2Fe0.8O3-δ-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ composite cathode for proton-conduction solid fuel cells”, Journal of Alloy and Compounds, vol.484, pp. 856-859, 2009.
[72] C. W. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry, vol. 14, pp. 1125-1144, 2009.
[73] H. Patra, S. K. Rout, S. K. Pratihar, and S. Bhattacharya, “Thermal, electrical and electrochemical characteristics of Ba1−xSrxCo0.8Fe0.2O3−δ cathode material for intermediate temperature solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 36, pp. 11904-11913, 2011.
[74] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. B. Mogensen, S. Singhal, and J. M. Vohs, “Advanced anodes for high-temperature fuel cells”, Nature Materials, vol. 3, pp. 17-27, 2004.
[75] W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A, vol. 362, pp. 228-239, 2003.
[76] X. W. Zhou, N. Yan, K. T. Chuang, and J. Luo, “Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells”, RSC Advances, vol. 4, pp. 118-113, 2014.
[77] Y. Matsuzaki and I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode Part I. Dependence on temperature, time, and impurity”, Solid State Ionics, vol. 132, pp. 261-269, 2000.
[78] S. Park, J. M. Vohs, and R. J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, vol. 44, pp. 265-267, 2000.
[79] S. McIntosh, J. M. Vohs, and R. J. Gorte, “An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes”, Electrochimica Acta, vol. 47, pp. 3815-3821, 2002
[80] S. Hashimoto, F. W. Poulsen, and M. Mogensen, “Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature”, Journal of Alloys and Compounds, vol. 439, pp. 232-236, 2007.
[81] X. L. Huang, H. L. Zhao, W. H. Qiu, W. J. Wu, and X. Li, “Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials”, Energy Conversion and Management, vol. 48, pp. 1678-1682, 2007.
[82] P. R. Slater, D. P. Fagg, and J. T. S. Irvine, “Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells”, Journal of MaterIals and Chemistry, vol. 7(12), pp. 2495–2498, 1997.
[83] X. Li, H. L. Zhao, X. Zhou, N. S. Xu, Z. X. Xie, and N. Chen, “Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 35, pp. 7913-7918, 2010.
[84] Y. Tsvetkova and V. Kozhukharov, “Synthesis and study of compositions of the La–Sr–Ti–O system for SOFCs anode development”, Materials and Design, vol. 30, pp. 206-209, 2009.
[85] S. Hashimoto, L. Kindermann, P. H. Larsen, F. W. Poulsen, and M. Mogensen, “Conductivity and expansion at high temperature in Sr0.7La0.3TiO3−α prepared under reducing atmosphere”, Journal of Electroceramics, vol. 16, pp. 103-107, 2006.
[86] O. A. Marina, N. L. Canfield, and J. W. Stevenson, “Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate”, Solid State Ionics, vol. 149, pp. 21–28, 2002.
[87] D. J. Cumming, V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, and J. A. Kilner, “Electrical properties and dimensional stability of Ce-doped SrTiO3−δ for solid oxide fuel cell applications”, Journal of the American Ceramic Society, vol. 94, pp. 2993-3000, 2011.
[88] A. Vincent, J. L. Luo, K. T. Chuang, and A. R. Sanger, “Effect of Ba doping on performance of LST as anode in solid oxide fuel cells”, Journal of Power Sources, vol. 195, pp. 769-774, 2010.
[89] G. T. Kim, S. W. Lee, J. Y. Shin, G. Corre, and J. T. S. Irvine, “Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM”, Electrochemical and Solid-State Letters, vol. 12, pp. B48-B52, 2009.
[90] H. Devianto, S. P. Yoon, S. W. Nam, J. H. Han, and T. H. Lim, “The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell”, Journal of Power Sources, vol. 159, pp. 1147-1152, 2006.
[91] G. Mogensen, “Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2”, Journal of the Electrochemical Society, vol. 141, pp. 2122-2128, 1994.
[92] S. McIntosh and R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemical Reviews, vol. 104, p. 4845−4865, 2004.
[93] C. Périllat-Merceroz, G. Gauthier, P. Roussel, M. Huv, P. Gelin, and R. N. Vannier, “Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane”, Chemistry of Materials, vol. 23, pp. 1539-1550, 2011.
[94] K. B. Yoo and G. M. Choi, “Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC”, Solid State Ionics, vol. 180, pp. 867-871, 2009.
[95] J. Fleig, S. Rodewald, J. Maier, “Spatially resolved measurements of highly conductive and highly resistive grain boundaries using microcontact impedance spectroscopy”, Solid State Ionics, vol. 136–137, pp. 905-911, 2000.
[96] R. Waser, R. Hagenbeck, ”Grain boundaries in dielectric and mixed-conducting ceramics”, Acta Materialia, vol. 48, pp. 797-825, 2000.
[97] D. Makovec, Z. Samardžija, D. Kolar, “Solid solubility of cerium in BaTiO3”, Journal of Solid State Chemsitry, vol.123, pp. 30-38, 1996.
[98] H. L. Tuller, in: O.T. Sørensen (Ed.), Nonstoichiometric Oxides, Academic Press, New York, 1981.
[99] J. A. Kilner, C. D. Walters, “The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides”, Solid State Ionics, vol. 6, pp. 253-259, 1982.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top