|
[01] G. J. K. Acres, “Recent advances in fuel cell technology and its applications”, Journal of Power Sources, vol. 100, pp. 60-66, 2001. [02] M. L. Perry and T. F. Fuller, “A historical perspective of fuel cell technology in the 20th century”, Journal of The Electrochemical Society, vol. 149, pp. S59-S67, 2002. [03] T. Mori, J. Drennan, Y. R Wang, J. G. Li, and T. Ikegami, "Influence of nano-structure on electrolytic properties in CeO2 based system”, Journal of Thermal Analysis and Calorimetry, vol. 70, pp. 309–319, 2002. [04] T. Mori , J. Drennan , J. H. Lee , J. G. Li , and T. Ikegami, “Oxide ionic conductivity and microstructures of Sm-or La doped CeO2-based systems”, Solid State Ionics, vol. 154-155, pp. 461-466, 2002. [05] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. Liu, “Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, vol. 52, pp. 7343–7351, 2007. [06] P. R. Slater, D. P. Fagg and J. T. S. Irvine, “Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells”, Journal of Materials Chemistry, vol. 7, pp. 2495-2498, 1997. [07] K. Ahn, S. Jung, J. M. Vohs and R. J. Gorte, “A support layer for solid oxide fuel cells”, Ceramics International, vol. 33, pp. 1065-1070, 2007. [08] H. A. Taroco, S. T. Paula Andrade, M. C. Brant, R. Z. Domingues, and T. Matencio, “Assembly and electrical characterization of solid oxide fuel cell stacks”, Qumica Nova, vol. 32, pp. 1297-1305, 2009. [09] J. H. Fergus, X. Rob. Li, D. P. Wilkinson, and J. J. Zhang, Solid oxide fuel cells: materials properties and performance, ELSEVIER, 2009. [10] S. C. Singhal and K. Kendall, High temperature solid oxide fuel cells: Fundamentals, design, and applications, ELSEVIER, 2003. [11] K. C. Wincewicz, and J. S. Cooper, “Taxonomies of SOFC material and Manufacturing alternatives”, Journal of Power Sources, vol. 140, pp. 280-296, 2005. [12] S. P. S. Badwal, “Stability of solid oxide fuel cell components”, Solid State Ionics, vol. 143, pp. 39-46, 2001. [13] P. Charpentier, P. Fragnaud , D. M. Schleich, and E. Gehain, “Preparation of thin film SOFCs working at reduced temperature”, Solid State Ionics, vol. 135, pp. 373-380, 2000. [14] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemistry Review, vol. 104 pp. 4845–4865, 2004. [15] S. Chunwen, S.Ulrich, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007. [16] X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H.Yoshida, T. Inagaki, K. Miura, “Interface reactions in the NiO–SDC–LSGM system”, Solid State Ionics, vol. 133, pp.153-160, 2000. [17] X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H.Yoshida, T. Inagaki, K. Miura, “Interface reactions in the NiO–SDC–LSGM system”, Solid State Ionics, vol. 133, pp.153-160, 2000. [18] K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, “Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere”, Solid State Ionics, vol. 121, pp. 217-224, 1999. [19] H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide”, Journal of Solid State Chemistry, vol. 26, pp. 265-274, 1978. [20] H. Inaba, H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, vol. 83, pp.1-16, 1996. [21] M. Dudek, J. Molenda, “Preparation and properties of CeO2-based electrolytes”, Bulletin Ceramics, vol. 84, pp.177-182, 2004. [22] R. Gerhardt-Anderson and A. S. Nowick, “Ionic conductivity of CeO2 with trivalent doped of different ionic radii”, Solid State lonics, vol. 5, pp. 547-550, 1981. [23] J. A. Kilner, “Fast Anion transport in solids”, Solid State Ionics, vol. 8, pp. 201-207, 1983. [24] A. Tschope, E. Sommer, R. Birringer, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments”, Solid State Ionics vol. 139, pp.255-265, 2001. [25] A. Tschope, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model”, Solid State Ionics vol. 139, pp.267-280, 2001. [26] S. Ramesh, V. Prashanth Kumar, P. Kistaiah, and C. V. Reddy, “Preparation characterization and thermal electrical properties of co-doped Ce0.8-xSm0.2CaxO2 materials”, Solid State Ionics, vol. 181, pp. 86-91, 2010. [27] M. Dudek, W. Bogusz, L. Zych and B. Trybalska, “Electrical and mechanical properties of CeO2-based electrolytes in the CeO2–Sm2O3–M2O3 (M=La ,Y) system”, Solid State Ionics, vol. 179, pp. 164-167, 2008. [28] Y. P. Fu, C. W. Tseng, and P.-C. Peng, “Effect of bismuth addition on the electrical conductivity of gadolinium-doped ceria ceramics”, Journal of the European Ceramic Society, vol. 28, pp. 85-90, 2008. [29] M. Dudek, “Ceramic oxide electrolytes based on CeO2—Preparation, properties and possibility of application to electrochemical devices”, Journal of the European Ceramic Society, vol. 28, pp. 965-971, 2008. [30] X. Q. Sha, Z. Lü, X. Q. Huang, J. P. Miao, Z. G. Liu, X. S Xin, Z. H. Zhang, W. H. Su, “Influence of the sintering temperature on electrical property of the Ce0.8Sm0.1Y0.1O1.9 electrolyte”, Journal of Alloys and Compounds, vol. 433, pp. 274-278, 2007. [31] S. K. Tadokoro and E. N. S. Muccillo, “Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics”, Journal of the European Ceramic Society, vol. 27, pp. 4261-4264, 2007. [32] S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun, and S. A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol–gel coating method”, Journal of Power Sources, vol. 110, pp. 222-228, 2002. [33] D. Hirabayashi, A. Tomita, S. Teranishi, T. Hibino, M. Sanoc, “Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCe1−xSmxO3−α layer for intermediate-temperature SOFCs”, Solid State Ionics, vol.176, pp. 881-887, 2005. [34] K. Eguchi, T. Setoguchi, T. Inoue, H. Aral, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells”, Solid State Ionics, vol.52, pp. 165-172, 1992. [35] I. Kosacki, NATO Science Series, “Fuel Cell Technologies—State and Perspectives”, Springer, vol.202, pp. 395-416, 2005. [36] I. Kosacki, “160 years of fuel cells - impossible becomes possible”, Chemical Letters, pp. 77-101, 2005. [37] Z. P. Li, T. Mori, J. Zou, and J. Drennand, “Defects clustering and ordering in di- and trivalently doped ceria”, Materials Research Bullitin, vol. 48, pp. 807-812, 2013. [38] T. Mori, J. Drennan, D. R. Ou, and F. Ye, “Design of high quality doped CeO2 solid electrolytes with nanohetero structure”, Nukleonik, vol. 51, pp. S11-S18, 2006. [39] T. Mori, J. Drennan, Y. R. Wang, J. G. Li , and T. Ikegami, “Influence of nanostructure on electrolytic properties in CeO2 based system”, Journal of Thermal Analysis and Calorimetry, vol. 70, pp. 309-319, 2002. [40] J. H. Lee, T. Mori, J. G. Li, T. Ikegami, G. Auchterlonie, J. Drennan, “Improvement of the electrolytic properties of Y2O3-based materials using a crystallographic index”, Solid State Ionics, vol. 138, pp. 277–291, 2001. [41] J. A. Kilner, “A study of oxygen ion conductivity in doped non-stoichiometric oxides”, Solid State Ionics, vol. 6, pp. 237-252, 1982. [42] J. A. Kilner, “Fast oxygen transport in acceptor doped oxides”, Solid State Ionics, vol. 129, pp. 13–23, 2000. [43] F. Ye, T. Mori, D. R. Ou, and A. N. Cormack, “Dopant type dependency of domain development in rare-earth-doped ceria: An explanation by computer simulation of defect clusters”, Solid State Ionics, vol. 180, pp. 1127-1132, 2009. [44] Z. P. Li, T. Mori, F. Ye, D. R. Ou, and J. Zou, “Ordered structures of defect clusters in gadolinium-doped ceria”, Journal of Chemical Physics, vol. 134, p. 224708, 2011. [45] F. Ye, T. Mori, J. Zou, D. R. Ou, and J. Drennan, “A structure model of nano-sized domain in Gd-doped ceria”, Solid State Ionics, vol. 180, pp. 1414-1420, 2009. [46] F. Ye, T. Mori, D. R. Ou, A. N. Cormack, R. J. Lewis, and J. Drennan, “Simulation of ordering in large defect clusters in gadolinium-doped ceria”, Solid State Ionics, vol. 179, pp. 1962-1967, 2008. [47] Z. P. Li, T. Mori, G. J. Auchterlonie, J. Zou, and J. Drennanc, “Nanodomain formation and distribution in Gd-doped ceria”, Materials Research Bulletin, vol. 47, pp. 763-767, 2012. [48] Z. P. Li, T. Mori, G. J. Auchterlonie, J. Zou, and J. Drennan, “Direct evidence of dopant segregation in Gd-doped ceria”, Applied Physics Letters, vol. 98, p. 093104, 2011. [49] J. Fleig , “Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance”, Annual Review Materials Research, vol.33, pp.361–382, 2003. [50] K. Wang, R. Ran, W. Zhou, H. X. Gu, Z. P. Shaoa, and J. Ahn, “Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Sm0.2Ce0.8O1.9 composite cathode”, Journal of Power Sources, vol. 179, pp. 60-68, 2008. [51] J. Ovenstone, J.-Il J., J. S. White, D. D. Edwards, and S. T. Misture, “Phase stability of BSCF in low oxygen partial pressures”, Journal of Solid State Chemistry, vol. 181, pp. 576–586, 2008. [52] W. G. Haije. J. F. Vente, Z. S. Rak, “Performance of functional perovskite membranes for oxygen production”, Journal of Membrane Science, vol. 276, pp. 178-184, 2006. [53] S. Li, Z. Lü, B. Wei, X. Huang, J. Miao, G. Cao, R. Zhu, W. Su, “A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs”, Journal of Alloys and Compounds, vol. 426, pp. 408-414, 2006. [54] Z. Duan, M. Yang, A. Yan, Z. Hou, Y. Dong, Y. Chong, M. Cheng, “Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs with a GDC interlayer”, Journal of Power Sources, vol. 160, pp. 57-64, 2006. [55] Z. P. Shao, S. M. Haile, J. M. Ahn, P. D. Ronney, Z. L. Zhan, and S. A. Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high power density”, Nature, vol. 435, pp. 795-798, 2005. [56] G. Corbel, S. Mestiri, and P. Lacorre, “Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor”, Solid State Sciences, vol. 7, pp. 1216-1224, 2005. [57] Z. P. Shao and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, vol. 431, pp. 170-173, 2004. [58] H. Dong, Z. P. Shao, G. X. Xiong, Y. Cong, W. Yang, “Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion”, Journal of Membrane Science, vol. 183, pp. 181-192, 2001. [59] Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, and G. Xiong, “Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 oxygen membrane”, Journal of Membrane Science, vol. 172, pp. 177-188, 2000. [60] J. Nielsen and J. Hjelm, “Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes”, Electrochimica Acta, vol. 115, pp. 31-45, 2014. [61] Q. L. Liu, K. A. Khor, S. H. Chan, “High-performance low-temperature solid oxide fuel cell with novel BSCF cathode”, Journal of Power Sources, vol.161, pp.123-128, 2006. [62] E. A. Kotomin, R. Merkle, Y. A. Mastrikov, M. M. Kuklja, and J. Maier, Energy Conversion: Solid Oxide Fuel Cells : First-Principles Modeling of Elementary Processes, 150-186, Wiley, 2013. [63] L. Wang, R. Merkle, G. Cristiani, “PLD-deposited (Ba,Sr)(Co,Fe)O3-δ thin film microelectrodes: structure aspects and oxygen incorporation kinetics”, ECS Trans. vol. 13, pp. 85–95, 2008. [64] H. H. Wang, C. Tablet, A. Fedhoff, J. Caro, “Cobalt-free oxygen permeable membrance based on the peroviskite type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ”, Advanced Materials, vol. 17, pp. 1785-1788, 2005. [65] X. L. Dong, Z. Xu, X. F. Chang, C. Zhang, and W. Jin, “Chemical expansion, crystal structural sStability, and oxygen permeability of SrCo0.4Fe0.6-xAlxO3-δ oxides”, Journal of the American Ceramic Society, vol. 90, pp. 3923-3929, 2007. [66] T. Nakamura, G. Petzow, and L. J. Gauckler, “Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results”, Materials Research Bulletin, vol. 14, pp. 649-659, 1979. [67] S. K. Jaiswal, J. K. Kumar, “Sol-gel formation, Mössbauer studies, optical absorption and impedance characteristics of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ powder”, Materials Chemistry and Physics, vol. 136, pp. 28-35, 2012. [68] S. G. Huang, G. J. Wang, X. H. Sun, C. M. Lei, T. Li, and C. Wang, “Cobalt-free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3−δ as a cathode material for intermediate temperature solid oxide fuel cells”, Journal of Alloys and Compounds, vol. 543, pp. 26-30, 2012. [69] X. F. Chu, F. Liu, W. C. Zhu, Y. P. Dong, M. F. Ye, and W. Sun, “Cobalt-free composite Ba0.5Sr0.5Fe0.9Ni0.1O3–δ–Ce0.8Sm0.2O2–δ as Ccathode for intermediate temperature solid oxide fuel cell”, Journal of Materials Science & Technology, vol. 28, pp. 828-832, 2012. [70] W. P. Sun, Z. Shi , S. M. Fang, L. T. Yan, Z. W. Zhu, and W. Liu, “A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode”, International Journal of Hydrogen Energy, vol. 35, pp. 7925-7929, 2010. [71] X. Y. Lu, Y. Z. Ding, Y. Chen, “Ba0.5Sr0.5Zn0.2Fe0.8O3-δ-BaCe0.5Zr0.3Y0.16Zn0.04O3-δ composite cathode for proton-conduction solid fuel cells”, Journal of Alloy and Compounds, vol.484, pp. 856-859, 2009. [72] C. W. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry, vol. 14, pp. 1125-1144, 2009. [73] H. Patra, S. K. Rout, S. K. Pratihar, and S. Bhattacharya, “Thermal, electrical and electrochemical characteristics of Ba1−xSrxCo0.8Fe0.2O3−δ cathode material for intermediate temperature solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 36, pp. 11904-11913, 2011. [74] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. B. Mogensen, S. Singhal, and J. M. Vohs, “Advanced anodes for high-temperature fuel cells”, Nature Materials, vol. 3, pp. 17-27, 2004. [75] W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A, vol. 362, pp. 228-239, 2003. [76] X. W. Zhou, N. Yan, K. T. Chuang, and J. Luo, “Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells”, RSC Advances, vol. 4, pp. 118-113, 2014. [77] Y. Matsuzaki and I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode Part I. Dependence on temperature, time, and impurity”, Solid State Ionics, vol. 132, pp. 261-269, 2000. [78] S. Park, J. M. Vohs, and R. J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, vol. 44, pp. 265-267, 2000. [79] S. McIntosh, J. M. Vohs, and R. J. Gorte, “An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes”, Electrochimica Acta, vol. 47, pp. 3815-3821, 2002 [80] S. Hashimoto, F. W. Poulsen, and M. Mogensen, “Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature”, Journal of Alloys and Compounds, vol. 439, pp. 232-236, 2007. [81] X. L. Huang, H. L. Zhao, W. H. Qiu, W. J. Wu, and X. Li, “Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials”, Energy Conversion and Management, vol. 48, pp. 1678-1682, 2007. [82] P. R. Slater, D. P. Fagg, and J. T. S. Irvine, “Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells”, Journal of MaterIals and Chemistry, vol. 7(12), pp. 2495–2498, 1997. [83] X. Li, H. L. Zhao, X. Zhou, N. S. Xu, Z. X. Xie, and N. Chen, “Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 35, pp. 7913-7918, 2010. [84] Y. Tsvetkova and V. Kozhukharov, “Synthesis and study of compositions of the La–Sr–Ti–O system for SOFCs anode development”, Materials and Design, vol. 30, pp. 206-209, 2009. [85] S. Hashimoto, L. Kindermann, P. H. Larsen, F. W. Poulsen, and M. Mogensen, “Conductivity and expansion at high temperature in Sr0.7La0.3TiO3−α prepared under reducing atmosphere”, Journal of Electroceramics, vol. 16, pp. 103-107, 2006. [86] O. A. Marina, N. L. Canfield, and J. W. Stevenson, “Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate”, Solid State Ionics, vol. 149, pp. 21–28, 2002. [87] D. J. Cumming, V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, and J. A. Kilner, “Electrical properties and dimensional stability of Ce-doped SrTiO3−δ for solid oxide fuel cell applications”, Journal of the American Ceramic Society, vol. 94, pp. 2993-3000, 2011. [88] A. Vincent, J. L. Luo, K. T. Chuang, and A. R. Sanger, “Effect of Ba doping on performance of LST as anode in solid oxide fuel cells”, Journal of Power Sources, vol. 195, pp. 769-774, 2010. [89] G. T. Kim, S. W. Lee, J. Y. Shin, G. Corre, and J. T. S. Irvine, “Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM”, Electrochemical and Solid-State Letters, vol. 12, pp. B48-B52, 2009. [90] H. Devianto, S. P. Yoon, S. W. Nam, J. H. Han, and T. H. Lim, “The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell”, Journal of Power Sources, vol. 159, pp. 1147-1152, 2006. [91] G. Mogensen, “Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2”, Journal of the Electrochemical Society, vol. 141, pp. 2122-2128, 1994. [92] S. McIntosh and R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemical Reviews, vol. 104, p. 4845−4865, 2004. [93] C. Périllat-Merceroz, G. Gauthier, P. Roussel, M. Huv, P. Gelin, and R. N. Vannier, “Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane”, Chemistry of Materials, vol. 23, pp. 1539-1550, 2011. [94] K. B. Yoo and G. M. Choi, “Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC”, Solid State Ionics, vol. 180, pp. 867-871, 2009. [95] J. Fleig, S. Rodewald, J. Maier, “Spatially resolved measurements of highly conductive and highly resistive grain boundaries using microcontact impedance spectroscopy”, Solid State Ionics, vol. 136–137, pp. 905-911, 2000. [96] R. Waser, R. Hagenbeck, ”Grain boundaries in dielectric and mixed-conducting ceramics”, Acta Materialia, vol. 48, pp. 797-825, 2000. [97] D. Makovec, Z. Samardžija, D. Kolar, “Solid solubility of cerium in BaTiO3”, Journal of Solid State Chemsitry, vol.123, pp. 30-38, 1996. [98] H. L. Tuller, in: O.T. Sørensen (Ed.), Nonstoichiometric Oxides, Academic Press, New York, 1981. [99] J. A. Kilner, C. D. Walters, “The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides”, Solid State Ionics, vol. 6, pp. 253-259, 1982.
|