跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉維育
研究生(外文):Wei-Yu Yeh
論文名稱:寡毛綱纖毛蟲的培養條件與應用於水產病原弧菌生物防治之研究
論文名稱(外文):A study of oligotrich ciliate cultivation and its application in aquaculture biological control of pathogenic vibrios
指導教授:林翰佳
指導教授(外文):Lin, Han-Jia
口試委員:林翰佑陳逸民曹哲嘉
口試委員(外文):Lin, Han-YouChen, Yi-MinTsao, Che-Chia
口試日期:2017-01-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:寡毛綱纖毛蟲弧菌生物防治
外文關鍵詞:Oligotrich CiliateVibrioBiocontrolBiological Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
疾病為水產養殖產業所面臨的重要問題,傳統的治療方法容易產生藥物殘留或抗藥性,對環境及食安造成影響。若能利用生物防治則可以免除這些問題,但目前水產養殖的生物防治大多以被動式抑制病原的方式為主,缺乏有效主動減少病原菌的方式。本研究擬利用具有攝食細菌特性的寡毛綱急游屬纖毛蟲 (Oligotrichea),評估將此生物應用於水產養殖病原弧菌防治的可行性。在目前已建立的 Strombidium parasulcatum 穩定培養條件下,利用生米加海水的培養基,可將纖毛蟲在 18 天內由 1隻/mL 增加 500 倍,達到 500 隻/mL 。實驗證明 Strombidium parasulcatum 實際上是以附著在生米上的 Erwinia 與 Kluyvera 等細菌為食物。而進一步的實驗也證實除了上述兩種細菌之外,大腸桿菌以及病原弧菌等也是 Strombidium parasulcatum 可攝食的對象。我們也以 EGFP 螢光轉殖大腸桿菌測試,發現單隻 Strombidium parasulcatum 移除細菌的平均速率約為 241 cells/hr。而為了未來實務上的應用,我們也嘗試使用其他培養條件,提升 Strombidium parasulcatum 的養殖密度。例如我們改用餵食 Erwinia 菌所製備的培養基,可將纖毛蟲的飽和濃度提高 20 倍,達到約 10000 隻/mL。由上述的初步實驗顯示,以 Strombidium parasulcatum 作為養殖病原菌的生物防治是可行的。我們將繼續進行動物實驗及田野實驗,期望能以更環保的方式解決水產養殖的問題。
Disease control is an important issue in aquaculture. Because of bad management, traditional treatments, such as drugs, may have residues and resistance problems that will cause impact on food security and environment. On the other hand, biological control can relieve these problems. However, current biological control methods are passive and inefficient. Here, we used Strombidium parasulcatum, an oligotrich ciliate, to ingest pathogenic bacteria and evaluates the feasibility of biological control with ciliates in aquaculture. Using the raw rice-seawater medium, Strombidium parasulcatum could ingest bacteria, such as Erwinia and Kluyvera, grown on the raw rice and increased its cell number 500-fold (from 1 cell/ mL to 500 cells/ mL) in 18 days. Experiments showed that bacteria, Erwinia and Kluyvera, attached to the raw rice are food of Strombidium parasulcatum Further, pathogenic Vibrio and E.coli were also used to culture Strombidium parasulcatum By using EGFP-expressing E. coli, the forage rate of Strombidium parasulcatum was estimated as 241 E.coli / hr. Adjustments of culture medium to Erwinia may further increase the maximum cell density of Strombidium parasulcatum to 20 folds (10000 cells/mL) that is enough for practical applications. Although the animal tests and field experiments are still ongoing, our preliminary experiments showed that Strombidium parasulcatum is a high potential biological control agent for aquaculture disease. We will continue to conduct animal experiments and field experiments and to solve the problem of aquaculture disease in an environmentally friendly way.
目錄
謝誌 II
Abstract VII
摘要 VIII
1.1 水產養殖的發展價值與重要性 1
1.2 水產養殖面臨的疾病問題 2
1.2.1疾病對水產養殖的影響 2
1.2.2 水產養殖的細菌性疾病 3
1.2.3 水產養殖上重要的細菌性病原菌: 弧菌 (Vibrio) 4
1.2.4 水產養殖對細菌性疾病的防治方法與問題 6
1.3 生物防治的應用 7
1.3.1 生物防治用於水產養殖 7
1.3.2 纖毛蟲用於生物防治的可行性 8
1.4 海洋微型浮遊動物: 寡毛綱纖毛蟲 (Oligotrichea) 9
1.4.1 寡毛綱纖毛蟲在海洋的生態地位 9
1.4.2 寡毛綱 (Oligotrich) 纖毛蟲的培養 10
1.5 研究方法與動機 11
貳、材料與方法 12
2.1 寡毛綱纖毛蟲 Strombidium parasulcatum 實驗方法 12
2.1.1 纖毛蟲品種 12
2.1.2 Strombidium parasulcatum 培養與保存 12
2.1.2.1 人工海水製備 12
2.1.2.2 無菌人工海水製備 13
2.1.2.3 毛細管吸蟲法 14
2.1.2.4 米粒培養基培養法 15
2.1.2.5 3% NaCl TSB 製備 15
2.1.2.6 3% NaCl TSB 平板製備 16
2.1.2.7 餌料菌分離與鑑定 17
2.1.2.8 菌種保存 17
2.1.2.9 冷凍菌餌料製備 18
2.1.3 Strombidium parasulcatum 觀察與計數 18
2.1.3.1 Lugol’s 固定液製備 18
2.1.3.2 Strombidium parasulcatum 低濃度計數法 19
2.1.3.3 Strombidium parasulcatum 高濃度計數法 19
2.1.3.4 Strombidium parasulcatum 纖毛蟲清洗法 20
2.1.3.6 Strombidium parasulcatum 之免疫螢光染色 20
2.1.4 Strombidium parasulcatum 攝食細菌實驗 23
2.1.4.1 eGFP-E.coli 攝食測試 23
2.1.4.2 病源弧菌攝食測試 23
2.1.5 Strombidium parasulcatum 魚病測試實驗 24
2.1.5.1 弧菌攻毒實驗 (浸泡法) 24
2.1.5.1 弧菌攻毒實驗 (含Strombidium parasulcatum) 24
2.2 分子生物學方法 - eGFP-E.coli 製備 25
2.2.1 聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 25
2.2.2 DNA 洋菜膠體電泳 26
2.2.3 DNA電泳膠純化 26
2.2.4 限制酶剪切 27
2.2.5 質體接合重組 27
2.2.6 洋菜培養基製備法 28
2.2.7 勝任細胞製備與轉型 28
2.2.8 小量質體抽取 29
參、研究結果 30
3.1 Strombidium parasulcatum 培養方式的改良 30
3.1.1 Strombidium parasulcatum 米粒培養基培養法 30
3.1.2 Strombidium parasulcatum 餌料菌的選擇與分離 30
3.1.3 Erwinia 餌料菌的培養測試 31
3.1.4 餌料菌的保存 31
3.2 Strombidium parasulcatum 攝食細菌的情形與消化率 32
3.2.1 Strombidium parasulcatum 攝食不同細菌對其生長的影響 32
3.2.2 以 eGFP-E.coli 來觀察細菌在纖毛蟲體內的消化情形 32
3.3 Strombidium parasulcatum 防治弧菌感染的效果 33
3.3.1 Strombidium parasulcatum 攝食弧菌 33
3.3.2生物防治測試 34
3.3.3 Strombidium parasulcatum 治療弧菌感染測試 34
肆、討論及未來方向 49
4.1 Strombidium parasulcatum 培養方式的改良 49
4.2 Strombidium parasulcatum 應用於弧菌生物防治的可行性 49
4.3 Strombidium parasulcatum 作為海水仔魚餌料生物的潛力 49
伍、參考文獻 51
Calbet, A., & Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology, 38(2), 157-167.
Adeleke, M. A., Mafiana, C. F., Sam-Wobo, S. O., Olatunde, G. O., Ekpo, U. F., Akinwale, O. P., & Toe, L. (2010). Biting behaviour of Simulium damnosum complex and Onchocerca volvulus infection along the Osun River, Southwest Nigeria. Parasites & Vectors, 3. doi:Artn 93
10.1186/1756-3305-3-93
Adl, S. M., Leander, B. S., Simpson, A. G. B., Archibald, J. M., Anderson, O. R., Bass, D., . . . Spiegel, F. (2007). Diversity, nomenclature, and taxonomy of protists. Systematic Biology, 56(4), 684-689. doi:10.1080/10635150701494127
Agatha, S. (2011). Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water. Plos One, 6(8). doi:ARTN e22466
10.1371/journal.pone.0022466
Austin, B., & Austin, D. A. (1999). Bacterial fish pathogens: disease of farmed and wild fish: Springer-Verlag KG.
Austin, B., Baudet, E., & Stobie, M. (1992). Inhibition of bacterial fish pathogens by Tetraselmis suecica. J. Fish. Dis, 15, 55-61.
Austin, B., Pride, A. C., & Rhodie, G. A. (2003). Association of a bacteriophage with virulence in Vibrio harveyi. Journal of Fish Diseases, 26(1), 55-58. doi:DOI 10.1046/j.1365-2761.2003.00413.x
Barbieri, E., Falzano, L., Fiorentini, C., Pianetti, A., Baffone, W., Fabbri, A., . . . Donelli, G. (1999). Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic Coast. Applied and Environmental Microbiology, 65(6), 2748-2753.
Barton, B. A., & Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis, 1, 3–26.
Bergey, D. H., & Holt, J. G. (1994). Bergey's manual of determinative bacteriology.
Bermúdez-Almada, M. C., & Espinosa-Plascencia, A. (2012). The Use of Antibiotics in Shrimp Farming,Health and Environment in Aquaculture. Research Center for Food and Development.
BN, L., & BL, B. (2000). Regulation of quorum sensing inVibrio harveyi by LuxO and sigma-54. Molecular Microbiology, 36, 940–954.
Colwell, R. R., & Grimes, D. J. (1984). Vibrio disease of marine fish population. Dis. Mar. Org, 37, 265-287.
Cooper, S., Battat, A., Marot, P., & Sylvester, M. (1983). Production of antibacterial activities by two Bacillariophyceae grown in dialysis 53 culture. Can. J. Microbiol, 29, 338-341.
CORLISS, J. (1979). A Note on the Occurrence of the Ciliate Tetrahymena, Potential Biocontrol Agent, in the Blackfly Vector of Onchocerciasis from Ivory Coast. Transactions of the American Microscopical Society, 98(4), 587-591.
Corliss, J. O. (1972). Tetrahymena and Some Thoughts on the Evolutionary Origin of Endoparasitism. Transactions of the American Microscopical Society, 91(4), 566-573.
Davies, J. E., Roberts, M. C., Levy, S. B., Miller, G. H., O’Brien, T. F., & Tenover, F. C. (1999). Antimicrobial resistance: An ecological perspective. A report from the American Academy of Microbiology, 16–18.
DeBach, P. (1964). Biological Control of Insect Pests and Weeds.
Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology, 14(3), 251-258. doi:10.1016/j.mib.2011.03.004
Denner, E. B., Vybiral, D., Fischer, U. R., Velimirov, B., & Busse, H. J. (2002). Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 microm-fiIterabIe marine bacterium. Int J Syst Evol Microbiol, 52(Pt 2), 549-553. doi:10.1099/00207713-52-2-549
DK, S., & MW, S. (1987). Chloroplast retention by marine planktonic ciliates. Annals of the New York Academy of Sciences, 503, 562–565.
Egidius, E. (1987). Vibriosis: Pathogenicity and pathology. Aquaculture, 67, 15-28.
EH, B. (1981). Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. Journal of Infectious Diseases, 143, 325–345.
F, A., T, F., JG, F., JS, G., LA, M.-R., & F, T. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257-263.
FAO. (2007). Fishery and Aquaculture Statistics: FAO yearbook.
FAO. (2016). The State of World Fisheries and Aquaculture.
FAO/WHO. (2001). 2001 FAO/WHO Health and nutritional properties of probiotics in food including powder milk with liver lactic acid bacteria Food and Agriculture Organization and World Health Organization Joint report.
Fenchel, T. (2008). The microbial loop-25 years later. Journal of Experimental Marine Biology and Ecology, 366(1-2), 99-103. doi:10.1016/j.jembe.2008.07.013
Finkelstein, R., Edelstein, S., & Mahamid, G. (2002). Fulminant wound infections due to Vibrio vulnificus. Israel Medical Association Journal, 4(8), 654-655.
Fuller, R. (1987). A review, probiotics in man and animals J. Appl. Bacteriol., 66, 365–378.
Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture, 180(1-2), 147-165. doi:Doi 10.1016/S0044-8486(99)00187-8
Gauthier, M. J., Bernard, P., & Aubert, J. (1978). Production d'un antibiotique lipidique photo-sensible par la diatomee marine Chaetoceros lauderi. Ann. Microbiol., 129, 63-70.
Goldburg, R., & Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3(1), 21-28. doi:Doi 10.1890/1540-9295(2005)003[0021:Fsfaff]2.0.Co;2
Grave, K., Markestad, A., & Bangen, M. (1996). Comparison in prescribing-patterns of antibacterial drugs in salmonid farming in Norway during the periods 1980-1988 and 1989-1994 (Reprinted from Den Norske Veterinoerforening, vol 106, pg 711-721, 1994). Journal of Veterinary Pharmacology and Therapeutics, 19(3), 184-191. doi:DOI 10.1111/j.1365-2885.1996.tb00037.x
Green, M. M., LeBoeuf, R. D., & Churchill, P. F. (2000). Biological and molecular characterization of cellular differentiation in Tetrahymena vorax: A potential biocontrol protozoan. Journal of Basic Microbiology, 40(5-6), 351-361. doi:Doi 10.1002/1521-4028(200012)40:5/6<351::Aid-Jobm351>3.0.Co;2-Q
Grisez, L., Reyniers, J., Verdonck, L., Swings, J., & Ollevier, F. (1997). Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture, 155(1-4), 387-399. doi:Doi 10.1016/S0044-8486(97)00113-0
Hamre, K., Yufera, M., Ronnestad, I., Boglione, C., Conceicao, L. E. C., & Izquierdo, M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5, S26-S58. doi:10.1111/j.1753-5131.2012.01086.x
Hyatt, K. D. (1979). 2 Feeding Strategy. Fish Physiology, 8, 71-119.
Haya, K., Burridge, L. E., & Chang, B. D. (2001). Environmental impact of chemical wastes produced by the salmon aquaculture industry. Ices Journal of Marine Science, 58(2), 492-496. doi:DOI 10.1006/jmsc.2000.1034
Henke, J. M., & Bassler, B. L. (2004). Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol, 186(12), 3794-3805. doi:10.1128/JB.186.12.3794-3805.2004
Huys, L., Dhert, P., Robles, R., Ollevier, F., Sorgeloos, P., & Swings, J. (2001). Search for beneficial bacterial strains for turbot (Scophthalmus maximus L.) larviculture. Aquaculture, 193(1-2), 25-37. doi:Doi 10.1016/S0044-8486(00)00474-9
Institute, F. R. (2003). Guide to Diseases Control for Common Aquaculture Species. FRI Special Publication, No.2.
J, G. D. (1985). Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Marine Ecology-Progress Series, 23(3), 257-267.
Johnson, F. H., & Shunk, I. V. (1936). An Interesting New Species of Luminous Bacteria. J Bacteriol, 31(6), 585-593.
K, G. (1968). Some observations on biology of Tintinnopsis sp. Journal of Protozoology, 15(1), 193-194.
Pierce, R. W., & Turner, J. T. (1992). Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Sciences, 6(2), 139-181.

Karunasagar, I., Shivu, M. M., Girisha, S. K., Krohne, G., & Karunasagar, I. (2007). Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture, 268(1-4), 288-292. doi:10.1016/j.aquaculture.2007.04.049
Klieve, A. V., & Hegarty, R. S. (1999). Opportunities for biological control of ruminal methanogenesis. Australian Journal of Agricultural Research, 50(8), 1315-1319. doi:Doi 10.1071/Ar99006
L’Abee-Lund, T. M., & H, S. (2001). Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicidaworldwide. Microb Drug Resist, 7, 263–272.
Lalli, C. M., & Parsons, T. R. (1997). Biological Oceanography: Oxford.
Larsen, M. H., & Boesen, H. T. (2001). Role of £agellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in ¢sh macrophages. Fems Microbiology Letters, 203, 149-152.
Larsen, M. H., Larsen, J. L., & Olsen, J. E. (2001). Chemotaxis of Vibrio anguillarum to fish mucus: role of the origin of the fish mucus, the fish species and the serogroup of the pathogen. Fems Microbiology Ecology, 38(1), 77-80. doi:Doi 10.1016/S0168-6496(01)00170-2
Lynn, & Denis. (2008). The Ciliated Protozoa 3rd Edition: Springer.
M, M. (1986). An illustrated guide to the species of the Families Halteriidae and Strobilidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull Ocean Res Inst, 21, 1–67.
M, M., & PG, C. (1985). An illustrated guide to the species of the Family Strombidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull Ocean Res Inst, 19, 1–68.
MA, G., MC, Y., JB, K., & GL, P. (1975). Isolation of micro- and macronuclei of tetrahymena pyriformis. Methods Cell Biol, 9, 11-27.
Manefield, M., Harris, L., Rice, S. A., de Nys, R., & Kjelleberg, S. (2000). Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol, 66(5), 2079-2084.
Mascola, L., Tormey, M., Dassey, D., Harvey, S., Medina, A., Tilzer, A., & Waterman, S. (1996). Vibrio vulnificus infections associated with eating raw oysters - Los Angeles, 1996 (Reprinted from MMWR, vol 45, pg 621-624, 1996). Jama-Journal of the American Medical Association, 276(12), 937-938.
Min, C. C., & Abdullah, M. (2014). Fish and Crustaceans: Immune System, Vaccine Development and Implications Chapter: Universiti Putra Malaysia Press.
MJ, D., & S, D. (1981). Control of ciliary activity in Paramecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog Neurobiol, 16(1), 1-115.
Mok, K. C., Wingreen, N. S., & Bassler, B. L. (2003). Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J, 22(4), 870-881. doi:10.1093/emboj/cdg085
Naviner, M., Berge, J. P., Durand, P., & Le Bris, H. (1999). Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture, 174(1-2), 15-24. doi:Doi 10.1016/S0044-8486(98)00513-4
Naylor, R., & Burke, M. (2005a). Aquaculture and ocean resources: raising tigers of the sea. Annu Rev Environ Resources, 30, 185–218.
Naylor, R., & Burke, M. (2005b). Aquaculture and ocean resources: Raising tigers of the sea. Annual Review of Environment and Resources, 30, 185-218. doi:10.1146/annurev.energy.30.081804.121034
Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., . . . Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024. doi:Doi 10.1038/35016500
Newaj-Fyzul, A., Al-Harbi, A. H., & Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1-11. doi:10.1016/j.aquaculture.2013.08.026
Nielsen, Gissel, T., & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnology and Oceanography, 39(3), 508-519.
OECD/FAO. (2012). OECD-FAO Agricultural Outlook 2012-2021: OECD publishing.
PH, K., & JW, P. (2011). Live attenuated bacterial vaccines in aquaculture. Proceedings of the 9th International Symposium on Tilapia in Aquaculture, 18–26.
Pridgeon, J. W., & Klesius, P. H. (2012). Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews, No. 048.
Q, W. (2002). Social and economic impacts of aquatic animal health problems in aquaculture in China. FAO Fisheries Technical Paper 2002, 406, 55–61.
R.P, S., M.G, B.-R., & S.E, c. (2001). Aquaculture development, health and wealth. Aquaculture in the Third Millennium: Technical Proceedings of the International Conference.
Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., & Pickup, R. W. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Applied and Environmental Microbiology, 66(9), 3883-3890. doi:Doi 10.1128/Aem.66.9.3883-3890.2000
Rosenberg, E., & Ben-Haim, Y. (2002). Microbial diseases of corals and global warming. Environmental Microbiology, 4(6), 318-326. doi:DOI 10.1046/j.1462-2920.2002.00302.x
Ross, I., Clarissa, C., Giddings, T. H., & Winey, M. (2013). epsilon-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies. Journal of Cell Science, 126(15), 3441-3451. doi:10.1242/jcs.128694
RP, S. (2005). Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive Veterinary Medicine 2005, 67, 117–124.
Ruwandeepika, H. A., Bhowmick, P. P., Karunasagar, I., Bossier, P., & Defoirdt, T. (2011). Quorum sensing regulation of virulence gene expression in Vibrio harveyi in vitro and in vivo during infection of gnotobiotic brine shrimp larvae. Environ Microbiol Rep, 3(5), 597-602. doi:10.1111/j.1758-2229.2011.00268.x
RW, P., & JT, T. (1992). Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci, 6(2), 139-181.
Sørum, H. (2006). Antimicrobial drug resistance in fish pathogens. In Antimicrobial Resistance in Bacteria of Animal Origin. American Society for Microbiology, 213–238.
Sawabe, T., Setoguchi, N., Inoue, S., Tanaka, R., Ootsubo, M., Yoshimizu, M., & Ezura, Y. (2003). Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-V-halioticoli association. Aquaculture, 219(1-4), 671-679. doi:Pii S0044-8486(02)00618-X
Doi 10.1016/S0044-8486(02)00618-X
Sommerset, I., Krossoy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89-101. doi:10.1586/14760584.4.1.89
Stoecker, D. K., Silver, M. W., Michaels, A. E., & Davis, L. H. (1988). Obligate mixotrophy inLaboea strobila, a ciliate which retains chloroplasts. Marine Biology, 99, 415–423.
Stoecker, D. K., Silver, M. W., Michaels, A. E., & Davis, L. H. (1989). Enslavement of algal chloroplasts by four Strombidium spp. (Ciliophora, Oligotrichida). Marine Microbial Food Webs, 3(2), 79-100.
Suantika, G., Dhert, P., Rombaut, G., Vandenberghe, J., De Wolf, T., & Sorgeloos, P. (2001). The use of ozone in a high density recirculation system for rotifers. Aquaculture, 201(1-2), 35-49. doi:Doi 10.1016/S0044-8486(01)00532-4
Subasinghe, R. P., M.G, B.-R., & Gladdery, S. E. (2001). Aquaculture development, health and wealth. Aquaculture in the Third Millennium: Technical Proceedings of the International Conference.
T, F. (1986). Protozoan filter feeding. Progr Protistol, 1, 65-113.
Tacon, A. G. J. (2001). Increasing contribution of aquaculture for food security and poverty alleviation. Aquaculture in the Third Millennium: Technical Proceedings of the International Conference, 63–72.
Tanaka, T., & Rassoulzadegan, F. (2002). Full-depth profile (0-2000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: Vertical partitioning of microbial trophic structures. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 49(11), 2093-2107. doi:Pii S0967-0645(02)00029-2
Doi 10.1016/S0967-0645(02)00029-2
Thompson, F. L., Iida, T., & Swings, J. (2004). Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403-+. doi:10.1128/Mmbr.68.3.403-431.2004
Travers, M. A., BArbou, A., Le Goic, N., Huchette, S., Paillard, C., & Koken, M. (2008). Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection. Fems Microbiology Letters, 289(1), 34-40. doi:10.1111/j.1574-6968.2008.01367.x
Vandenberghe, J., Li, Y., Verdonck, L., Li, J., Sorgeloos, P., Xu, H. S., & Swings, J. (1998). Vibrios associated with Penaeus chinensis (Crustacea : Decapoda) larvae in Chinese shrimp hatcheries. Aquaculture, 169(1-2), 121-132. doi:Doi 10.1016/S0044-8486(98)00319-6
Vandenberghe, J., Thompson, F. L., Gomez-Gil, B., & Swings, J. (2003). Phenotypic diversity amongst Vibrio isolates from marine aquaculture systems. Aquaculture, 219(1-4), 9-20. doi:Pii S0044-8486(02)00312-5
Doi 10.1016/S0044-8486(02)00312-5
W, P. R., & T, T. J. (1992). Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Sciences, 6(2), 139-181.
Watson, R., & Pauly, D. (2001). Systematic distortions in world fisheries catch trends. Nature, 414(6863), 534-536. doi:10.1038/35107050
Whitman, W. (2012). Bergey's Manual of Systematic Bacteriology.
Witzany, Guenther, Nowacki, & Mariusz. (2016). Biocommunication of Ciliates.
Ying, Y., Zhang, W., Xu, H., & Xiao, T. (2011). Laboratory culture of marine oligotrich ciliates. Marine Sciences, 35(9).
Zapata, A., Diez, B., Cejalvo, T., Frias, C. G., & Cortes, A. (2006). Ontogeny of the immune system of fish. Fish & Shellfish Immunology, 20(2), 126-136. doi:10.1016/j.fsi.2004.09.005
Zapata, A. G., Torroba, M., Varas, A., & Jimenez, E. (1997). Immunity in fish larvae. Fish Vaccinology, 90, 23-32.
Zubkov, M. V., & Sleigh, M. A. (1999). Protozoan feeding on natural and cultured bacteria deposited on inert polymeric and mineral membrane filters. Biofouling, 14(1), 25-35.
朱鴻鈞. (2010). 全球漁業發展現況及未來趨勢分析--兼論臺灣漁業發展現況. 農業生技產業季刊.
黃世鈴, 蘇淑貞, & 陳秀男. (2005). 水產養殖: 魚病萬花筒. 科學發展, 385, 22-25.
蘇偉成, & 劉富光. (2005). 水產養殖:臺灣水產養殖的永續經營. 科學發展, 42- 49.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top