跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宗元
研究生(外文):Chang, Tsung-Yuan
論文名稱:天然資源轉換成光電材料
論文名稱(外文):Natural resources conversion for optoelectronic materials application
指導教授:林秀美林秀美引用關係林泰源林泰源引用關係
指導教授(外文):Lin, Hsiu-MeiLin, Tai-Yuan
口試委員:陳乃權洪文誼李亞儒
口試委員(外文):Chen, Nai-ChuanHung, Wen-YiLee, Ya-Ju
口試日期:2017-01-06
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:貝殼廢棄物固態反應碳熱反應螢光粉矽藻葉綠素
外文關鍵詞:shell wastesolid-state reactioncarbothermic reactionphosphordiatiomchlorophyll
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主題為將天然資源將轉化成為光電材料,分為三個部分:第一部分為將天然廢棄物(貝殼)轉化成白光螢光粉;第二部分是以矽藻的葉綠素萃取物作為矽太陽能電池的抗反射層;第三部分是使用矽藻殼結合GaN或Rh6G等增益介質演示隨機激光現象。
第一個研究是利用一般的固態反應法製備單相磷酸釓鈣(Ca9Gd(PO4)7, CGP)共摻雜銪二價陽離子(Eu2+)與錳二價陽離子(Mn2+)的白光螢光粉(CGP:Eu2+,Mn2+),其中鈣的來源是由天然的生物貝殼(文蛤)所轉化而來。我們以X光粉末繞射(X-ray powder diffraction, XRD)、光激發螢光激發光譜(photoluminescence excitation, PLE)與光激發螢光光譜(photoluminescence, PL)做螢光粉的定性分析。由以波長為350 nm的光源激發螢光粉所得之放光光譜,可觀察到一個375到650 nm的寬放光帶,又由以波長490 nm光源所激發的光譜,可以觀察到250-450 nm的寬廣激發帶。以上的結果說明Eu2+可以有效地吸收近紫外光(300-400 nm),且發出藍光到紅光之間的寬帶放光,因此Eu2+可以做為感光體(sensitizer),轉移部份能量到Mn2+活化體(activater)。我們將白光CGP:Eu2+,Mn2+螢光粉與紫外光發光二極體結合,成功製作出白光發光二極體。
第二部分的研究是利用酒精溶劑從矽藻萃取葉綠素,這種萃取方式比使用其他溶劑(如丙酮、己烷)的作法更為安全與環保。葉綠素萃取物的光學性質是以PL與紫外光-可見光吸收光譜(UV-vis spectrophotometer)做分析,在PL的放光光譜中,我們沒有發現葉綠素c的波峰,這可能是因為其放光強度較弱或者是在萃取物中所含的比例遠低於葉綠素a,因此,矽藻萃取物的PL放光來自葉綠素a的成分,經由光譜分析得到葉綠素a濃度約100 mg L-1,葉綠素a可吸收紫外光到藍光(250-470 nm)並發出紅光(670 nm)。由上述的光學分析,矽藻萃取物中光子能量轉換的主要活性成分是葉綠素a,矽藻萃取物可以做為紫外到紅光光子轉換的材料。我們將矽藻萃取物做為抗反射層與光子能量轉換層,做為提升矽太陽能電池效率的方法。
在最後的部分,我們展示一種由生物性矽藻殼組成的複合材料在紫外和可見光區的產生隨機雷射現象,由於矽藻結構的多孔網絡具有低的光損耗,我們以生物矽藻結構做為散射中心,使GaN 薄膜和Rh6G 染料的光激發螢光產生隨機雷射現象。有趣的是,透過矽藻結構,可以容易地獲得具有非常尖銳波峰的紫外和可見光範圍隨機激光現象,結果顯示矽藻殼的尺寸大小可以形成產生隨機雷射的光學共振條件。
We have investigated on the converting natural resources into the optoelectronic materials. The research topics include: (1) Converting natural waste (shell) into the white-light phosphors. (2) Using chlorophyll extract from diatom algae as a anti-reflection layer on silicon solar cells. (3) Using GaN or Rh6G as gain media to couple with diatom frustules for the demonstration of random laser action.
The first topic is the preparation of co-doping Eu2+, Mn2+ into a single-phased Ca9Gd(PO4)7 (CGP) white-light phosphors by conventional solid state reaction method. The sources of calcium which hosted in CGP:Eu2+,Mn2+ were transferred by biological shellfish (clams). The X-ray powder diffraction (XRD), photoluminescence excitation (PLE) and photoluminescence (PL) spectra were used to ensure the physical properties of CGP:Eu2+,Mn2+. The PL spectra by 350 nm excitation showed a broad blue-greenish emission band ranging from 375 nm to 650 nm, and the PLE spectra (λem = 490 nm) showed a broad hump from 250 to 450 nm. As the above results showed the Eu2+ could efficiently absorb near ultraviolet (300–400 nm) light and give blue to red broadband emissions. Therefore, Eu2+ can act as a sensitizer, transferring a part of its energy to activator ions, manganese ions (Mn2+). Finally, we successfully demonstrated the fabrication and packaging of a phosphor-converted white light-emitting diodes (pc-WLEDs) by pumping a white-emitting CGP: Eu2+, Mn2+ phosphor with an UV LED chip.
For the second topic, chlorophyll (chl) was extracted from diatom with ethanol. Comparing with other solvents (such as actone and hexane), the use of ethanol was more safety and environmentally friendly. The spectra of chlorophyll extraction were well characterized by UV-vis spectrophotometer and PL techniques. In our measurements, we detected no PL emission for chlorophyll c (chl-c), which is likely due to its relatively weaker natural emission or much lower fraction in the sample as compared with chlorophyll a (chl-a). Thus, the monitored PL peak for the diatom extract can be attributed to chl-a content, which is determined spectroscopically to be about 100 mg L-1. Chl-a absorted the UV to blue (250–470 nm) light, than emitted red light (670 nm). From the above optical analysis, the primary active content (chl-a) is responsible for photon energy conversion in the diatom extract, which makes the diatom extract be an attractive candidate for violet-to-red photon conversion. We will demonstrated an approach to improve the Efficiency of silicon solar cells by incorporating the diatom extract as an layers of antireflection of light and photon energy conversion.
Finally, we demonstrated a random laser actions in ultraviolet and visible regions based on the composites consisting of bio-derived diatom frustules. Owing to the low optical loss from porous network of diatom structures, the random laser actions were generated from GaN film or Rh6G dye via using biological diatoms as scattering centers. Interestingly, both ultraviolet and visible-range random laser actions with very sharp peaks can be easily obtained, indicating the size of diatom frustules can constitute the optical resonance conditions for generating random lasers.
謝誌 I
摘要 III
Abstract V
目錄 VII
圖目錄 XII
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 背景介紹 5
2-1螢光粉 5
2-1-1 螢光粉應具備的條件 5
2-1-2光的特性參數 6
2-1-3 白光發光二極體(WLED) 8
2-1-4 單相白光螢光粉 8
2-1-5 能量轉移機制 10
2-1-6 螢光粉的主體材料 12
2-1-6-1 磷酸鈣(β-Ca3(PO4)2, β-TCP) 12
2-1-6-2 磷酸釔鈣(Ca9Y(PO4)7, CYP) 12
2-1-6-3 矽酸磷酸鈣(Ca14.92(PO4)2.35(SiO4)5.65, CPS) 12
2-1-6-4 磷酸釓鈣(Ca9Gd(PO4)7, CGP)主體材料 12
2-1-7 螢光粉活化體之光學特性 13
2-1-7-1 銪三價陽離子(Eu3+) 13
2-1-7-2 銪二價陽離子(Eu2+) 14
2-1-7-1 鏑三價陽離子(Dy3+) 14
2-1-8 以活性碳建構的還原環境 15
2-2 貝殼廢棄物 16
2-2-1 貝殼的組成與結構 16
2-2-2 貝殼廢棄物(文蛤)之總量 17
2-2-3 貝殼結構的相轉變與應用 17
2-3 葉綠素的光電應用 18
2-3-1 葉綠素的萃取與定量 18
2-3-2 矽太陽能電池 18
2-4 矽藻殼的光電應用 19
2-4-1 隨機雷射 19
2-4-2 仿生與隨機雷射 20
第三章以貝殼為基礎轉化成螢光粉材料 21
3-1 貝殼結構相轉換:天然源碳酸鈣 21
3-1-1 實驗提要 21
3-1-2 實驗部分 21
3-1-2-1 實驗藥品 21
3-1-2-2 實驗步驟 21
3-1-2-3 分析儀器 21
3-1-3 結果與討論 22
3-1-3-1 文蛤殼結構之相轉換 22
3-1-3-2 文蛤殼結構之雜質分析 22
3-1-3-3 文蛤殼轉化為天然源碳酸鈣之成本估算 23
3-1-4 結論 26
3-2 以文蛤殼為基礎的[主體 + 活化體]螢光粉製備 27
3-2-1 實驗提要 27
3-2-2 實驗部分 27
3-2-2-1 實驗藥品 27
3-2-2-2 樣品合成步驟 28
3-2-2-3 實驗儀器 28
3-2-3 結果與討論 29
3-2-3-1以文蛤殼為基礎的[主體 + 活化體]螢光粉之結構分析 29
3-2-3-2以文蛤殼為基礎的[主體 + 活化體]螢光粉之光激發螢光分析 29
3-2-4 結論 32
3-3以文蛤殼為基礎的[主體 + 活化體 + 感光體]白光螢光粉製備 33
3-3-1 實驗提要 33
3-3-2 實驗部分 33
3-3-2-1 實驗藥品 33
3-3-2-2 樣品合成步驟 34
3-3-2-3 實驗儀器 34
3-3-3 結果與討論 35
3-3-3-1以文蛤殼為基礎的[主體 + 活化體 + 感光體]白光螢光粉之結構分析與表徵觀察 35
3-3-3-2 以文蛤殼為基礎的[主體 + 活化體 + 感光體]白光螢光粉之光學特性 35
3-3-4 結論 48
3-4其他以文蛤殼為基礎的螢光粉 49
3-4-1 以文蛤殼為基礎的CGP:Eu3+螢光粉 49
3-4-2 以文蛤殼為基礎的β-TCP:Dy3+螢光粉 49
3-4-3 以文蛤殼為基礎的CYP:Dy3+螢光粉 50
3-4-4 以文蛤殼與矽藻土為基礎CPS:Eu3+螢光粉 50
3-4-5 結論 55
第四章 矽藻的太陽能應用與矽藻殼的雷射應用 56
4-1 矽藻葉綠素之萃取與其太陽能元件應用 56
4-1-1 實驗提要 56
4-1-2 實驗部分 56
4-1-2-1 矽藻培養 56
4-1-2-2 實驗藥品 56
4-1-2-3 實驗方法 57
4-1-2-3.1 矽藻萃取葉綠素的方法 57
4-1-2-3.2 葉綠素A的定量分析 58
4-1-2-3.3 葉綠素應用於太陽能電池 58
5-1-2-4 實驗儀器 58
4-1-3 結果與討論 59
4-1-3-1 矽藻萃取物中葉綠素a之定量 59
4-1-3-1.1 以分光光度計分析 59
4-1-3-1.2 以光激發光譜儀分析 59
4-1-3-2 矽藻萃取葉綠素於太陽能電池應用成果[109] 65
4-1-4 結論 66
4-2 矽藻殼的隨機雷射應用 67
4-2-1 實驗提要 67
4-2-2 實驗部分 67
4-2-2-1 實驗藥品 67
4-2-2-2 實驗方法 67
4-2-2-3 實驗儀器 67
4-2-3 結果與討論 67
4-2-3-1 矽藻土之表面特徵與型貌 67
4-2-3-2矽藻殼應用於隨機雷射成果[113] 68
4-2-4 結論 69
總結 70
歷年發表著作一覽 71
SCI 71
代表著作 71
參考著作 71
國際研討會 72
2012 SPIE Photonics Asia - Beijing, China. 72
2015 Global Engineering & Applied Science Conference - Tokyo, Japan. 72
國內研討會 73
中華民國燃燒學會第二十二屆學術研討會 73
專利 73
參考文獻 74

[1] Zuo, S., Du, Y., Liu, F., Han, D., Qi, C., Applied Catalysis A: General, 2013, 451, 65-70.
[2] Kuo, W.T., Wang, H.Y., Shu, C.Y., Su, D.S., Construction and Building Materials, 2013, 46, 128-133.
[3] Yao, Z.T., Chen, T., Li, H.Y., Xia, M.S., Ye, Y., Zheng, H., Journal of Hazardous Materials, 2013, 262, 212-217.
[4] Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S., Renewable Energy, 2013, 50, 795-799.
[5] Falkowski, P., Knoll, A.H., Evolution of primary producers in the sea, Academic Press, 2011.
[6] Armbrust, E.V., Nature, 2009, 459, 185-192.
[7] Kumar, G.S., Girija, E.K., Venkatesh, M., Karunakaran, G., Kolesnikov, E., Kuznetsov, D., Ceramics International, 2017, 43, 3457-3461.
[8] Guo, X.L., Kuang, M., Li, F., Liu, X.Y., Zhang, Y.X., Dong, F., Losic, D., Electrochimica Acta, 2016, 190, 159-167.
[9] Deng, Y., Li, J., Qian, T., Guan, W., Wang, X., Journal of Materials Science & Technology, 2016, In Press, Corrected Proof.
[10] Blasse, G., Bril, A., The Journal of Chemical Physics, 1969, 50, 2974-2980.
[11] Dafinova, R., Papazova, K., Bojinova, A., Journal of Materials Science Letters, 1998, 17, 237-239.
[12] Bui Van, H., Pham Thanh, H., Tran Ngoc, K., Nguyen Thi Thanh, N., Pham Hong, D., Journal of Physics: Conference Series, 2009, 187, 012074.
[13] Chall, S., Mati, S.S., Rakshit, S., Bhattacharya, S.C., The Journal of Physical Chemistry C, 2013, 117, 25146-25159.
[14] Shang, M., Li, C., Lin, J., Chemical Society Reviews, 2014, 43, 1372-1386.
[15] Correlated color temperature, CCT: correlated color temperature.
[16] Smith, T., Guild, J., Transactions of the Optical Society, 1931, 33, 73.
[17] Chen, L., Lin, C.C., Yeh, C.W., Liu, R.S., Materials, 2010, 3, 2172-2195.
[18] Chiu, Y.C., Liu, W.R., Chang, C.K., Liao, C.C., Yeh, Y.T., Jang, S.M., Chen, T.M., Journal of Rare Earths, 2010, 28, Supplement 1, 250-253.
[19] Piao, X., Horikawa, T., Hanzawa, H., Machida, K.-i., Applied Physics Letters, 2006, 88, 161908.
[20] Huang, C.H., Liu, W.R., Chen, T.M., The Journal of Physical Chemistry C, 2010, 114, 18698-18701.
[21] Liu, X., Li, C., Quan, Z., Cheng, Z., Lin, J., The Journal of Physical Chemistry C, 2007, 111, 16601-16607.
[22] Huang, C.H., Wu, P.J., Lee, J.F., Chen, T.M., Journal of Materials Chemistry, 2011, 21, 10489-10495.
[23] Liang, C.H., Teoh, L.G., Liu, K.T., Chang, Y.S., Journal of Alloys and Compounds, 2012, 517, 9-13.
[24] Sinha, G., Patra, A., Chemical Physics Letters, 2009, 473, 151-154.
[25] Li, G., Li, C., Zhang, C., Cheng, Z., Quan, Z., Peng, C., Lin, J., Journal of Materials Chemistry, 2009, 19, 8936-8943.
[26] Li, G., Hou, Z., Peng, C., Wang, W., Cheng, Z., Li, C., Lian, H., Lin, J., Advanced Functional Materials, 2010, 20, 3446-3456.
[27] Chen, D., Wang, Y., Zheng, K., Guo, T., Yu, Y., Huang, P., Applied Physics Letters, 2007, 91, 251903.
[28] Lakshminarasimhan, N., Varadaraju, U.V., Journal of the Electrochemical Society, 2005, 152, H152-H156.
[29] Liu, Y., Zhang, X., Hao, Z., Wang, X., Zhang, J., Chemical Communications, 2011, 47, 10677-10679.
[30] Liu, X., Liu, Y., Yan, D., Zhu, H., Liu, C., Xu, C., Liu, Y., Wang, X., Journal of Materials Chemistry, 2012, 22, 16839-16843.
[31] Jiao, H., Wang, Y., Journal of the Electrochemical Society, 2009, 156, J117-J120.
[32] Chang, C.K., Chen, T.M., Applied Physics Letters, 2007, 91, 081902.
[33] Dai, Q., Foley, M.E., Breshike, C.J., Lita, A., Strouse, G.F., Journal of the American Chemical Society, 2011, 133, 15475-15486.
[34] Jakob, A.M., Schmedake, T.A., Chemistry of Materials, 2006, 18, 3173-3175.
[35] Ogi, T., Kaihatsu, Y., Iskandar, F., Wang, W.-N., Okuyama, K., Advanced Materials, 2008, 20, 3235-3238.
[36] Zhang, C., Li, C., Yang, J., Cheng, Z., Hou, Z., Fan, Y., Lin, J., Langmuir, 2009, 25, 7078-7083.
[37] Dexter, D.L., The Journal of Chemical Physics, 1953, 21, 836-850.
[38] Reisfeld, R., Lieblich-Soffer, N., Journal of Solid State Chemistry, 1979, 28, 391-395.
[39] Nakashima, K., Takami, M., Ohta, M., Yasue, T., Yamauchi, J., Journal of Luminescence, 2005, 111, 113-120.
[40] Wu, X.Y., Liang, Y.J., Chen, R., Liu, M.Y., Cheng, Z., Materials Chemistry and Physics, 2011, 129, 1058-1062.
[41] Geng, D.L., Shang, M.M., Zhang, Y., Lian, H.Z., Cheng, Z.Y., Lin, J., Journal of Materials Chemistry C, 2013, 1, 2345-2353.
[42] Guo, H., Wang, X.F., Chen, J.D., Li, F., Optics Express, 2010, 18, 18900-18905.
[43] Wu, Z.C., Liu, J., Hou, W.G., Xu, J., Gong, M.L., Journal of Alloys and Compounds, 2010, 498, 139-142.
[44] Wei, D., Huang, Y., Seo, H.J., Materials Research Bulletin, 2013, 48, 3614-3619.
[45] 蔡英亞, 張英, 魏若飛, 軟體動物貝類學概論, 基隆: 水產出版社, 1997.
[46] Feng, Q.L., Cui, F.Z., Pu, G., Wang, R.Z., Li, H.D., Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2000, 11, 19-25.
[47] 李彥儒, 台灣主要經濟貝類廢棄殼研製珍珠粉之可行性研究, 資源工程學系碩博士班, 國立成功大學, 台南市, 2007, pp. 75.
[48] 行政院農業委員會漁業署, 97-101年漁業年報.
[49] Yoshioka, S., Kitano, Y., Geochemical Journal, 1985, 19, 245-249.
[50] Pena-Rodriguez, S., Bermudez-Couso, A., Novoa-Munoz, J.C., Arias-Estevez, M., Fernandez-Sanjurjo, M.J., Alvarez-Rodriguez, E., Nunez-Delgado, A., Journal of Environmental Sciences, 2013, 25, 2476-2486.
[51] Brar, N., Schloessin, H., Canadian Journal of Earth Sciences, 1979, 16, 1402-1418.
[52] Parker, J.E., Thompson, S.P., Lennie, A.R., Potter, J., Tang, C.C., Crystengcomm, 2010, 12, 1590-1599.
[53] Shavandi, A., Bekhit, A., Ali, A., Sun, Z.F., Materials Chemistry and Physics, 2015, 149, 607-616.
[54] Srivastava, M., Ojha, A.K., Chaubey, S., Singh, J., Sharma, P.K., Pandey, A.C., Journal of Alloys and Compounds, 2010, 500, 206-210.
[55] Hao, S., Wu, J., Huang, Y., Lin, J., Solar Energy, 2006, 80, 209-214.
[56] Wongcharee, K., Meeyoo, V., Chavadej, S., Solar Energy Materials and Solar Cells, 2007, 91, 566-571.
[57] Arifin, Z., Soeparman, S., Widhiyanuriyawan, D., Suyitno, S., International Journal of Photoenergy, 2017, 2017.
[58] Yang, C., Song, X., Sun, B., Marine Sciences, 2007, 31, 6-9.
[59] Song, Y., Zhang, D., Zhang, H., Study of 660 nm laser-induced photoluminescence of chlorophyll-a and its applications, Journal of Physics: Conference Series, IOP Publishing, 2007, pp. 1488.
[60] Liu, C., Song, Y., Zhang, D., Zhang, H., On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α, Biophotonics, Nanophotonics and Metamaterials, Metamaterials 2006. International Symposium on, IEEE, 2006, pp. 57-59.
[61] Ravipati, S., Shieh, J., Ko, F.-H., Yu, C.-C., Chen, H.-L., Advanced Materials, 2013, 25, 1724-1728.
[62] Huang, Y., Sahraei, N., Widenborg, P.I., Marius Peters, I., Dalapati, G.K., Iskander, A., Aberle, A.G., Solar Energy Materials and Solar Cells, 2014, 122, 146-151.
[63] Chang, H.C., Lai, K.Y., Dai, Y.A., Wang, H.H., Lin, C.A., He, J.H., Energy & Environmental Science, 2011, 4, 2863-2869.
[64] Hu, L., Chen, G., Nano Letters, 2007, 7, 3249-3252.
[65] Diedenhofen, S.L., Janssen, O.T.A., Grzela, G., Bakkers, E.P.A.M., Gómez Rivas, J., Acs Nano, 2011, 5, 2316-2323.
[66] Jung, J.Y., Zhou, K., Um, H.D., Guo, Z., Jee, S.W., Park, K.T., Lee, J.H., Optics Letters, 2011, 36, 2677-2679.
[67] Martinet, C., Paillard, V., Gagnaire, A., Joseph, J., Journal of Non-Crystalline Solids, 1997, 216, 77-82.
[68] Ali, K., Khan, S.A., Mat Jafri, M.Z., Solar Energy, 2014, 101, 1-7.
[69] Hezel, R., Schörner, R., Journal of Applied Physics, 1981, 52, 3076-3079.
[70] Singh, P., Shivaprasad, S.M., Lal, M., Husain, M., Solar Energy Materials and Solar Cells, 2009, 93, 19-24.
[71] Lee, S.E., Choi, S.W., Yi, J., Thin Solid Films, 2000, 376, 208-213.
[72] Aroutiounian, V.M., Maroutyan, K.R., Zatikyan, A.L., Touryan, K.J., Thin Solid Films, 2002, 403–404, 517-521.
[73] Bhandari, K.P., Roland, P.J., Mahabaduge, H., Haugen, N.O., Grice, C.R., Jeong, S., Dykstra, T., Gao, J., Ellingson, R.J., Solar Energy Materials and Solar Cells, 2013, 117, 476-482.
[74] Huang, C.Y., Wang, D.Y., Wang, C.H., Chen, Y.T., Wang, Y.T., Jiang, Y.T., Yang, Y.J., Chen, C.C., Chen, Y.F., Acs Nano, 2010, 4, 5849-5854.
[75] Jung, J.Y., Zhou, K., Bang, J.H., Lee, J.H., The Journal of Physical Chemistry C, 2012, 116, 12409-12414.
[76] Wan, D., Chen, H.L., Tseng, T.C., Fang, C.Y., Lai, Y.S., Yeh, F.Y., Advanced Functional Materials, 2010, 20, 3064-3075.
[77] Parker, A.R., Townley, H.E., Nature Nanotechnology, 2007, 2, 347-353.
[78] Jeffryes, C., Campbell, J., Li, H., Jiao, J., Rorrer, G., Energy & Environmental Science, 2011, 4, 3930-3941.
[79] Balucani, M., Bondarenko, V., Dolgyi, L., Lamedica, G., Ricciardelli, A., Viarengo, E., Vorozov, N., Ferrari, A., Materials Science in Semiconductor Processing, 2000, 3, 351-355.
[80] Zhang, G.Q., Jiang, W.K., Wang, L.M., Liao, X.X., Liu, P.W., Deng, X.Y., Li, J.B., Materials Letters, 2013, 110, 253-255.
[81] Romann, J., Valmalette, J.C., Chauton, M.S., Tranell, G., Einarsrud, M.A., Vadstein, O., Scientific Reports, 2015, 5.
[82] Van Eynde, E., Hu, Z.Y., Tytgat, T., Verbruggen, S.W., Watte, J., Van Tendeloo, G., Van Driessche, I., Blust, R., Lenaerts, S., Environmental Science-Nano, 2016, 3, 1052-1061.
[83] Lamastra, F.R., De Angelis, R., Antonucci, A., Salvatori, D., Prosposito, P., Casalboni, M., Congestri, R., Melino, S., Nanni, F., RSC Advances, 2014, 4, 61809-61816.
[84] Wiersma, D.S., Nature Physics, 2008, 4, 359-367.
[85] Cao, H., Zhao, Y.G., Ho, S.T., Seelig, E.W., Wang, Q.H., Chang, R.P.H., Physical Review Letters, 1999, 82, 2278-2281.
[86] Yang, L., Feng, G., Yi, J., Yao, K., Deng, G., Zhou, S., Applied Optics, 2011, 50, 1816-1821.
[87] Polson, R.C., Vardeny, Z.V., Applied Physics Letters, 2004, 85, 1289-1291.
[88] Polson, R.C., Vardeny, Z.V., Journal of Optics, 2010, 12.
[89] Wang, C.S., Chang, T.Y., Lin, T.Y., Chen, Y.F., Scientific Reports, 2014, 4, 6736.
[90] Redding, B., Cerjan, A., Huang, X., Lee, M.L., Stone, A.D., Choma, M.A., Cao, H., Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1304-1309.
[91] Redding, B., Choma, M.A., Cao, H., Nature Photonics, 2012, 6, 355-359.
[92] Zhang, D., Kostovski, G., Karnutsch, C., Mitchell, A., Organic Electronics, 2012, 13, 2342-2345.
[93] Wu, X., Chen, Q., Sun, Y., Fan, X., Applied Physics Letters, 2013, 102, 203706.
[94] Shimomura, O., Bioluminescence: Chemical Principles and Methods, World Scientific, 2012.
[95] da Silva, R.R., Dominguez, C.T., dos Santos, M.V., Barbosa-Silva, R., Cavicchioli, M., Christovan, L.M., de Melo, L.S.A., Gomes, A.S.L., de Araujo, C.B., Ribeiro, S.J.L., Journal of Materials Chemistry C, 2013, 1, 7181-7190.
[96] Camposeo, A., Del Carro, P., Persano, L., Cyprych, K., Szukalski, A., Sznitko, L., Mysliwiec, J., Pisignano, D., Acs Nano, 2014, 8, 10893-10898.
[97] dos Santos, M.V., Dominguez, C.T., Schiavon, J.V., Barud, H.S., de Melo, L.S.A., Ribeiro, S.J.L., Gomes, A.S.L., de Araujo, C.B., Journal of Applied Physics, 2014, 115.
[98] Viola, I., Ghofraniha, N., Zacheo, A., Arima, V., Conti, C., Gigli, G., Journal of Materials Chemistry C, 2013, 1, 8128-8133.
[99] Guo, N., You, H., Song, Y., Yang, M., Liu, K., Zheng, Y., Huang, Y., Zhang, H., Journal of Materials Chemistry, 2010, 20, 9061-9067.
[100] Binnemans, K., Coordination Chemistry Reviews, 2015, 295, 1-45.
[101] Blasse, G., Journal of Solid State Chemistry, 1986, 62, 207-211.
[102] Zhang, X., Wang, Z., Shi, J., Gong, M., Materials Research Bulletin, 2014, 57, 1-5.
[103] Guo, N., Huang, Y., You, H., Yang, M., Song, Y., Liu, K., Zheng, Y., Inorganic Chemistry, 2010, 49, 10907-10913.
[104] Chang, T.Y., Wang, C.M., Lin, T.Y., Lin, H.M., Shell waste transfer into a red-emitting phosphors Ca9Gd(PO4)7:Eu3+ with magnetic property, Global Engineering & Applied Science ConferenceTokyo, Japan, 2015, pp. GEASC-1433.
[105] Wu, J.D., Study on luminescent properties and thermal stability of Ca3(PO4)2:Dy3+ phosphors derived from natural host materials., Institute of Optoelectronic Sciences, National Taiwan Ocean University, 2012.
[106] Chiu, C.W., Investigating the physical properties of marine organism transfer into the phosphor, Institute of Optoelectronic Sciences, National Taiwan Ocean University, 2013.
[107] Liu, Y., Investigating the physical properties of the marine organism transfer into the green-emitting phosphor materials, Institute of Optoelectronic Sciences, National Taiwan Ocean University, 2015.
[108] Guillard, R.R.L., Lorenzen, C.J., Journal of Phycology, 1972, 8, 10-14.
[109] Chen, C.T., Hsu, F.C., Huang, J.Y., Chang, C.Y., Chang, T.Y., Lin, H.M., Lin, T.Y., Chen, Y.F., RSC Advances, 2015, 5, 35302-35306.
[110] Akimoto, S., Teshigahara, A., Yokono, M., Mimuro, M., Nagao, R., Tomo, T., Biochimica et Biophysica Acta (BBA) - Bioenergetics.
[111] Dalton, J., Journal of the Chemical Society, Chemical Communications, 1980, 78-80.
[112] Beddard, G., Porter, G., Nature, 1976, 260, 366-367.
[113] Chen, Y.C., Wang, C.S., Chang, T.Y., Lin, T.Y., Lin, H.M., Chen, Y.F., Optics Express, 2015, 23, 16224-16231.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊