跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭辰字
研究生(外文):Siao,Chen-Zih
論文名稱:水熱法合成氧化鋅奈米柱/石墨烯複合材料陣列之閾值可調任意雷射
論文名稱(外文):ZnO nanorod-graphene nanocomposites array random lasers with controllable threshold fabricated by hydrothermal synthesis
指導教授:林泰源林泰源引用關係
指導教授(外文):Lin, Tai-Yuan
口試委員:蔡宗惠李亞儒沈志霖
口試委員(外文):Tsai, Tsung-HuiLee, Ya-JuShen, Ji-Lin
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:任意雷射石墨烯氧化鋅奈米柱水熱法
外文關鍵詞:Random LasersGrapheneZnO-nanorodHydrothermal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文研究石墨烯奈米片(graphene nano-flakes)的添加對於氧化鋅(zinc oxide , ZnO)奈米柱陣列的發光性質及任意雷射性能之影響。由原子力顯微鏡(AFM)及掃描式電子顯微鏡(SEM)的結果得知,摻雜不同濃度石墨烯奈米片對於氧化鋅奈米柱陣列的直徑、高度及表面粗糙度等性質的影響變化並不大,而且沒有明顯的關聯性。從X光繞射圖譜(XRD)的結果所分析之氧化鋅奈米柱結晶性的變化,也與石墨烯奈米片的摻雜濃度無明顯的相關性。由光激發螢光光譜發現摻雜微量的石墨烯奈米片,可以明顯地提高氧化鋅奈米柱陣列之近能帶邊緣發光強度,其紫外近能帶邊緣發光最大可提高為2倍。參考文獻報導,我們推論使氧化鋅近能帶邊緣PL強度改變的原因可能是石墨烯奈米片/氧化鋅介面之表面電漿共振效應。
  本研究結果顯示摻雜石墨烯奈米片可以控制氧化鋅奈米柱陣列任意雷射特性的可行性。
  In this study, the effects of graphene nanoflakes on the luminescent properties and random laser properties of zinc oxide (ZnO) nanorod arrays were investigated. The results of atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the effects of graphene nanoflakes on the diameter, height and surface roughness of zinc oxide nanorod arrays were not significant, and there were no obvious relevance. The change of the crystallinity of the ZnO nanocrystals analyzed by the X-ray diffraction pattern (XRD) may not have a significant correlation with the concentration of the graphene nanoflakes. It is found that the doping amounts of graphene nanoflakes can obviously improve the near-band edge luminescence intensity of zinc oxide nanorod arrays, its ultraviolet near band edge can be increased as high as 2 times with respect to that of pristine ZnO nanorods.According to the journal reports, it is believed that the reason for the change in the PL intensity of the zinc oxide nanorods may be the surface plasmon resonance effect at the graphene/ZnO interfaces.
  The results of this study show the feasibility that the insertions the graphene nanoflakes into ZnO nanorod can control the thresholds of the random laser from of the ZnO nanorods arrays.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
圖表目錄 IX
Chapter 1 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究方法 1
1-4 論文架構 1
Chapter 2 基本原理與文獻回顧 3
2-1 任意雷射的工作原理 3
2-1.1 任意雷射的機制 3
2-1.2 任意雷射的特性 3
2-1.3 任意雷射的應用 3
2-1.4 傳統雷射的Fabry–Pérot 腔 4
2-2 氧化鋅材料 6
2-2.1 氧化鋅材料特性 6
2-2.2 氧化鋅製備方法 6
2-2.3 氧化鋅任意雷射結構之文獻回顧 9
2-3 石墨烯材料 14
2-3.1 石墨烯材料特性 14
2-3.2 石墨烯製備方法 15
2-3.3 石墨烯光譜研究之文獻回顧 16
Chapter 3 實驗原理與儀器介紹 18
3-1 實驗介紹 18
3-2 實驗材料 18
3-3 樣品製備 19
3-3.1 清洗基板 19
3-3.2 石墨烯薄片的水溶液製作 19
3-3.3 氧化鋅種子層 20
3-3.4 氧化鋅奈米柱 20
3-4 不同量測樣品製備 21
3-4.1 Raman 樣品 21
3-4.2 FTIR 樣品 21
3-4.3 其他量測樣品 21
3-5 儀器原理 21
3-5.1 射頻磁控濺鍍(R.F. magnetron sputtering) 21
3-5.2 原子力顯微鏡(Atomic Force Microscope , AFM) 22
3-5.3 拉曼光譜儀(Raman spectroscopy) 24
3-5.4 傅立葉轉換紅外光譜(Fourier-Transform Infrared Spectrometer , FTIR) 24
3-5.5 掃描式電子顯微鏡(Scanning Electron Microscope , SEM) 25
3-5.6 X光能譜散佈分析儀 (Energy Dispersive Spectrometer , EDS) 25
3-5.7 X-射線繞射儀(X-Ray Diffraction , XRD) 25
3-5.8 光激發螢光光譜(Photoluminescence , PL) 26
3-5.9 X射線光電子能譜儀(X-Ray Photoelectron Spectroscopy , XPS) 27
3-5.10 任意雷射光譜 (Random Laser , RL) 28
Chapter 4 結果與討論 30
4-1 拉曼光譜儀分析(Raman spectroscopy)分析 30
4-2 原子力顯微鏡(Atomic Force Microscope , AFM)分析 31
4-3 掃描式電子顯微鏡(Scanning Electron Microscope , SEM)分析 33
4-4 X光能譜散佈分析儀 (Energy Dispersive Spectrometer , EDS) 35
4-5 X-射線繞射儀(X-Ray Diffraction , XRD)分析 36
4-6 X-射線光電子能譜儀(X-Ray Photoelectron Spectroscopy , XPS)分析 38
4-7 傅立葉轉換紅外光譜(Fourier-Transform Infrared Spectrometer , FTIR)分析 43
4-8 光激發螢光光譜(Photoluminescence , PL)分析 44
4-9 任意雷射光譜 (Random Laser , RL)分析 47
Chapter 5 總結 51
參考文獻 52
1. Wiersma, D.S., The physics and applications of random lasers. Nature Physics, 2008. 4(5): p. 359-367.
2. Polson, R.C. and Z.V. Vardeny, Random lasing in human tissues. Applied Physics Letters, 2004. 85(7): p. 1289-1291.
3. Tang, Z.K., et al., Self-assembled ZnO nano-crystals and exciton lasing at room temperature. Journal of Crystal Growth, 2006. 287(1): p. 169-179.
4. Wegscheider, W., et al., Lasing from excitons in quantum wires. Physical Review Letters, 1993. 71(24): p. 4071-4074.
5. Cao, H., et al., Random laser action in semiconductor powder. Physical Review Letters, 1999. 82(11): p. 2278-2281.
6. Cao, H., et al., Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Letters, 1998. 73(25): p. 3656-3658.
7. Xu, N., et al., Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Optics Express, 2012. 20(14): p. 14857-14863.
8. Okada, T., K. Kawashima, and M. Ueda, Ultraviolet lasing and field emission characteristics of ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser ablation deposition. Applied Physics a-Materials Science & Processing, 2005. 81(5): p. 907-910.
9. Huang, M.H., et al., Room-temperature ultraviolet nanowire nanolasers. Science, 2001. 292(5523): p. 1897-1899.
10. Jang, E.S., et al., Soft-solution route to ZnO nanowall array with low threshold power density. Applied Physics Letters, 2010. 97(4).
11. Marchini, S., S. Gunther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, 2007. 76(7): p. 9.
12. Yang, H.Y., et al., High-temperature random lasing in ZnO nanoneedles. Applied Physics Letters, 2006. 89(1).
13. Okazaki, K., et al., Lasing characteristics of an optically pumped single ZnO nanosheet. Optics Express, 2011. 19(21): p. 20389-20394.
14. Fujiwara, H., et al., ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New Journal of Physics, 2016. 18.
15. Zhang, D.K., Y.P. Wang, and D.G. Ma, ZnO Nanorods as Scatterers for Random Lasing Emission from Dye Doped Polymer Films. Journal of Nanoscience and Nanotechnology, 2009. 9(5): p. 3166-3170.
16. Luan, F., et al., Lasing in nanocomposite random media. Nano Today, 2015. 10(2): p. 168-192.
17. Letokhov, V. and J. Exp., Generation of Light by a Scattering Medium with Negative Resonance Absorption 1968: p. 835-840.
18. Gouedard, C., et al., Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. 1993: p. 2358-2363.
19. Lawandy, N.M., et al., Laser action in strongly scattering media. 1994: p. 436-438.
20. Sha, W., et al., Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media. 1994: p. 1922-1924.
21. Noginov, M.A., et al., LINE NARROWING IN THE DYE SOLUTION WITH SCATTERING CENTERS. Optics Communications, 1995. 118(3-4): p. 430-437.
22. Sun, T., et al., Dynamics of random laser and coherent backscattering of light from ZnO amplifying random medium. Applied Physics Letters, 2007. 91(24).
23. Meng, X.G., et al., Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Physical Review A, 2009. 79(5).
24. Yamilov, A., et al., Absorption-induced confinement of lasing modes in diffusive random media. Optics Letters, 2005. 30(18): p. 2430-2432.
25. Mujumdar, S., et al., Amplified extended modes in random lasers. Physical Review Letters, 2004. 93(5).
26. Bhaktha, B.N.S., et al., Optofluidic random laser. Applied Physics Letters, 2012. 101(15): p. 151101.
27. Redding, B., M.A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination. Nat Photon, 2012. 6(6): p. 355-359.
28. Redding, B., et al., Compact spectrometer based on a disordered photonic chip. Nat Photon, 2013. 7(9): p. 746-751.
29. Nathan, M.I., A.B. Fowler, and G. Burns, Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities. Physical Review Letters, 1963. 11(4): p. 152-154.
30. Tang, Z.K., et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998. 72(25): p. 3270-3272.
31. Hoffman, R.L., B.J. Norris, and J.F. Wager, ZnO-based transparent thin-film transistors. Applied Physics Letters, 2003. 82(5): p. 733-735.
32. Zhang, Q.F., et al., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
33. Kim, K.K., et al., Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Applied Physics Letters, 2009. 94(7).
34. Lupan, O., T. Pauporte, and B. Viana, Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes. Advanced Materials, 2010. 22(30): p. 3298-+.
35. Park, G.C., et al., Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Scientific Reports, 2015. 5.
36. Wang, Z.L. and J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246.
37. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003. 15(5): p. 464-466.
38. Myong, S.Y., et al., Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H(2)O) as new doping material. Japanese Journal of Applied Physics Part 2-Letters, 1997. 36(8B): p. L1078-L1081.
39. Singh, P., et al., Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films. Materials Letters, 2007. 61(10): p. 2050-2053.
40. Yao, B.D., Y.F. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters, 2002. 81(4): p. 757-759.
41. Znaidi, L., Sol-gel-deposited ZnO thin films: A review. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2010. 174(1-3): p. 18-30.
42. Sang, B.S., A. Yamada, and M. Konagai, Textured ZnO thin films for solar cells grown by a two-step process with the atomic layer deposition technique. Japanese Journal of Applied Physics Part 2-Letters, 1998. 37(2B): p. L206-L208.
43. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 2003. 82(22): p. 3901-3903.
44. Studenikin, S.A., N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics, 1998. 84(4): p. 2287-2294.
45. Wu, X.H., et al., Random lasing in closely packed resonant scatterers. Journal of the Optical Society of America B-Optical Physics, 2004. 21(1): p. 159-167.
46. Biswas, S. and L.T. Drzal, Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chemistry of Materials, 2010. 22(20): p. 5667-5671.
47. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
48. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
49. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
50. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
51. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
52. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777): p. 1191-1196.
53. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008. 3(9): p. 563-568.
54. Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10): p. 2017-2021.
55. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
56. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2009. 9(1): p. 30-35.
57. Li, X.L., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 2008. 3(9): p. 538-542.
58. Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nature Nanotechnology, 2009. 4(4): p. 217-224.
59. Coraux, J., et al., Structural coherency of graphene on Ir(111). Nano Letters, 2008. 8(2): p. 565-570.
60. Land, T., et al., STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270.
61. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007. 143(1–2): p. 47-57.
62. Bajpai, R., et al., Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. Nanoscale, 2012. 4(3): p. 926-930.
63. Lotya, M., et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 2009. 131(10): p. 3611-3620.
64. Maurya, D.K., A. Sardarinejad, and K. Alameh, Recent Developments in RF Magnetron Sputtered Thin Films for pH Sensing Applications-An Overview. Coatings, 2014. 4(4): p. 756-771.
65. Dufrene, Y.F., et al., Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nano, 2017. 12(4): p. 295-307.
66. 陳柏豪, Study of TiO2/graphene composite compact layer on improvement in the performance of dye-sensitized solar cells. 2015.
67. Wei, X.Q., et al., Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N-2 and O-2. Physica B-Condensed Matter, 2007. 388(1-2): p. 145-152.
68. Wang, P., et al., Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale, 2011. 3(4): p. 1640-1645.
69. Ahmad, M., et al., A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Applied Surface Science, 2013. 274: p. 273-281.
70. Bozetine, H., et al., Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 2016. 465: p. 286-294.
71. Zhou, H., et al., Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes. Journal of Materials Chemistry C, 2015. 3(5): p. 990-994.
72. Vanheusden, K., et al., Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996. 79(10): p. 7983-7990.
73. 康竣傑, Self-powered High Performance Ultraviolet Photodetectors Based on GaN/ZnO:graphene Composite Nanorods P-N Junction. 2016.
74. Hwang, S.W., et al., Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Physical Review Letters, 2010. 105(12): p. 4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊