|
1. Wiersma, D.S., The physics and applications of random lasers. Nature Physics, 2008. 4(5): p. 359-367. 2. Polson, R.C. and Z.V. Vardeny, Random lasing in human tissues. Applied Physics Letters, 2004. 85(7): p. 1289-1291. 3. Tang, Z.K., et al., Self-assembled ZnO nano-crystals and exciton lasing at room temperature. Journal of Crystal Growth, 2006. 287(1): p. 169-179. 4. Wegscheider, W., et al., Lasing from excitons in quantum wires. Physical Review Letters, 1993. 71(24): p. 4071-4074. 5. Cao, H., et al., Random laser action in semiconductor powder. Physical Review Letters, 1999. 82(11): p. 2278-2281. 6. Cao, H., et al., Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Letters, 1998. 73(25): p. 3656-3658. 7. Xu, N., et al., Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Optics Express, 2012. 20(14): p. 14857-14863. 8. Okada, T., K. Kawashima, and M. Ueda, Ultraviolet lasing and field emission characteristics of ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser ablation deposition. Applied Physics a-Materials Science & Processing, 2005. 81(5): p. 907-910. 9. Huang, M.H., et al., Room-temperature ultraviolet nanowire nanolasers. Science, 2001. 292(5523): p. 1897-1899. 10. Jang, E.S., et al., Soft-solution route to ZnO nanowall array with low threshold power density. Applied Physics Letters, 2010. 97(4). 11. Marchini, S., S. Gunther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, 2007. 76(7): p. 9. 12. Yang, H.Y., et al., High-temperature random lasing in ZnO nanoneedles. Applied Physics Letters, 2006. 89(1). 13. Okazaki, K., et al., Lasing characteristics of an optically pumped single ZnO nanosheet. Optics Express, 2011. 19(21): p. 20389-20394. 14. Fujiwara, H., et al., ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New Journal of Physics, 2016. 18. 15. Zhang, D.K., Y.P. Wang, and D.G. Ma, ZnO Nanorods as Scatterers for Random Lasing Emission from Dye Doped Polymer Films. Journal of Nanoscience and Nanotechnology, 2009. 9(5): p. 3166-3170. 16. Luan, F., et al., Lasing in nanocomposite random media. Nano Today, 2015. 10(2): p. 168-192. 17. Letokhov, V. and J. Exp., Generation of Light by a Scattering Medium with Negative Resonance Absorption 1968: p. 835-840. 18. Gouedard, C., et al., Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. 1993: p. 2358-2363. 19. Lawandy, N.M., et al., Laser action in strongly scattering media. 1994: p. 436-438. 20. Sha, W., et al., Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media. 1994: p. 1922-1924. 21. Noginov, M.A., et al., LINE NARROWING IN THE DYE SOLUTION WITH SCATTERING CENTERS. Optics Communications, 1995. 118(3-4): p. 430-437. 22. Sun, T., et al., Dynamics of random laser and coherent backscattering of light from ZnO amplifying random medium. Applied Physics Letters, 2007. 91(24). 23. Meng, X.G., et al., Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Physical Review A, 2009. 79(5). 24. Yamilov, A., et al., Absorption-induced confinement of lasing modes in diffusive random media. Optics Letters, 2005. 30(18): p. 2430-2432. 25. Mujumdar, S., et al., Amplified extended modes in random lasers. Physical Review Letters, 2004. 93(5). 26. Bhaktha, B.N.S., et al., Optofluidic random laser. Applied Physics Letters, 2012. 101(15): p. 151101. 27. Redding, B., M.A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination. Nat Photon, 2012. 6(6): p. 355-359. 28. Redding, B., et al., Compact spectrometer based on a disordered photonic chip. Nat Photon, 2013. 7(9): p. 746-751. 29. Nathan, M.I., A.B. Fowler, and G. Burns, Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities. Physical Review Letters, 1963. 11(4): p. 152-154. 30. Tang, Z.K., et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998. 72(25): p. 3270-3272. 31. Hoffman, R.L., B.J. Norris, and J.F. Wager, ZnO-based transparent thin-film transistors. Applied Physics Letters, 2003. 82(5): p. 733-735. 32. Zhang, Q.F., et al., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(41): p. 4087-4108. 33. Kim, K.K., et al., Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Applied Physics Letters, 2009. 94(7). 34. Lupan, O., T. Pauporte, and B. Viana, Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes. Advanced Materials, 2010. 22(30): p. 3298-+. 35. Park, G.C., et al., Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Scientific Reports, 2015. 5. 36. Wang, Z.L. and J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246. 37. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003. 15(5): p. 464-466. 38. Myong, S.Y., et al., Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H(2)O) as new doping material. Japanese Journal of Applied Physics Part 2-Letters, 1997. 36(8B): p. L1078-L1081. 39. Singh, P., et al., Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films. Materials Letters, 2007. 61(10): p. 2050-2053. 40. Yao, B.D., Y.F. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters, 2002. 81(4): p. 757-759. 41. Znaidi, L., Sol-gel-deposited ZnO thin films: A review. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2010. 174(1-3): p. 18-30. 42. Sang, B.S., A. Yamada, and M. Konagai, Textured ZnO thin films for solar cells grown by a two-step process with the atomic layer deposition technique. Japanese Journal of Applied Physics Part 2-Letters, 1998. 37(2B): p. L206-L208. 43. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 2003. 82(22): p. 3901-3903. 44. Studenikin, S.A., N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics, 1998. 84(4): p. 2287-2294. 45. Wu, X.H., et al., Random lasing in closely packed resonant scatterers. Journal of the Optical Society of America B-Optical Physics, 2004. 21(1): p. 159-167. 46. Biswas, S. and L.T. Drzal, Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chemistry of Materials, 2010. 22(20): p. 5667-5671. 47. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191. 48. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355. 49. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308. 50. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907. 51. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669. 52. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777): p. 1191-1196. 53. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008. 3(9): p. 563-568. 54. Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10): p. 2017-2021. 55. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314. 56. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2009. 9(1): p. 30-35. 57. Li, X.L., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 2008. 3(9): p. 538-542. 58. Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nature Nanotechnology, 2009. 4(4): p. 217-224. 59. Coraux, J., et al., Structural coherency of graphene on Ir(111). Nano Letters, 2008. 8(2): p. 565-570. 60. Land, T., et al., STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270. 61. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007. 143(1–2): p. 47-57. 62. Bajpai, R., et al., Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. Nanoscale, 2012. 4(3): p. 926-930. 63. Lotya, M., et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 2009. 131(10): p. 3611-3620. 64. Maurya, D.K., A. Sardarinejad, and K. Alameh, Recent Developments in RF Magnetron Sputtered Thin Films for pH Sensing Applications-An Overview. Coatings, 2014. 4(4): p. 756-771. 65. Dufrene, Y.F., et al., Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nano, 2017. 12(4): p. 295-307. 66. 陳柏豪, Study of TiO2/graphene composite compact layer on improvement in the performance of dye-sensitized solar cells. 2015. 67. Wei, X.Q., et al., Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N-2 and O-2. Physica B-Condensed Matter, 2007. 388(1-2): p. 145-152. 68. Wang, P., et al., Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale, 2011. 3(4): p. 1640-1645. 69. Ahmad, M., et al., A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Applied Surface Science, 2013. 274: p. 273-281. 70. Bozetine, H., et al., Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 2016. 465: p. 286-294. 71. Zhou, H., et al., Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes. Journal of Materials Chemistry C, 2015. 3(5): p. 990-994. 72. Vanheusden, K., et al., Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996. 79(10): p. 7983-7990. 73. 康竣傑, Self-powered High Performance Ultraviolet Photodetectors Based on GaN/ZnO:graphene Composite Nanorods P-N Junction. 2016. 74. Hwang, S.W., et al., Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films. Physical Review Letters, 2010. 105(12): p. 4.
|