跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅子瑜
研究生(外文):FU,TZU-YU
論文名稱:結合範例提示策略的遊戲式學習系統對國中生學習數學之影響---以濃度為例
論文名稱(外文):An Example Hint-based Computer Game for Math Learning –Take“Concentration” as Example
指導教授:楊凱翔楊凱翔引用關係
指導教授(外文):YANG,KAI-HSIAG
口試委員:黃國禎朱蕙君
口試委員(外文):HWANG,GWO-JENCHU,HUI-CHU
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:數學暨資訊教育學系(含數學教育碩士班)
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:濃度問題範例提示策略數位遊戲式學習
外文關鍵詞:ConcentrationExamples teaching methodDigital game-based learning system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:3
濃度包括濃度、溶質、溶劑與溶液等許多概念,因為內容複雜抽象、條件多樣,因此會讓學生感到害怕、產生高認知負荷,進而降低學習成效,學習濃度問題上最大的困難就是如何轉譯題目中的文字而成為解題條件,此時適當的解題範例可降低學習者需要的心智資源,透過觀察解題範例來解決問題。範例教學法是由認知負荷理論發展而來,藉由讓學習者觀摩範例題中的解題技巧和方法,降低認知負荷,使學生能夠在認知資源有限的情況下進行有效學習,已經有許多學者根據認知負荷理論施行範例數學解題教學實驗,獲得相當顯著的實驗結果,但是範例教學有可能產生「專業知能的反向效應」,
因此本研究希望藉由遊戲式學習可降低認知負荷的特性彌補範例提示策略的不足之處。遊戲式學習在許多文獻中已經被證實對於學生的學習成就、學習動機、專注度上都能帶來顯著的幫助,如果在遊戲中加入提示策略能帶來更好的學習表現和學習成就,因此本研究希望將融合範例提示策略跟遊戲式學習的優點進行探討,藉以瞭解範例提示策略的遊戲式學習系統對於學生在學習濃度計算問題的學習成就、認知負荷與心流經驗上,會產生哪些不同的影響。
本研究採準實驗研究法,實驗組是範例提示策略融入遊戲式學習系統的遊戲式學習,控制組則是一般數位遊戲式學習。研究結果顯示,範例提示策略融入遊戲式學習系統可顯著提升學習成效,並降低高學習能力組學生的認知負荷,而且實驗組與控制組學生在使用本學習系統都具有高度的心流經驗,在心流經驗方面沒有顯著差異。
Concentration is a chapter that includes solute, solvent, solution, and many
other concepts. It usually makes students feel scared and cause high cognitive
load and decrease learning outcome because of its complex and abstract content
and changeable question types. The most difficult thing for this kind of questions
is change the many words in questions into the conditions we need. Appropriate
solution examples can decrease the mental resources that students need and help
them to resolve the questions by following the examples. Examples teaching
method were progressed from cognitive load theory. By observing the methods
and skills, students can learn better under limited resources. Some researchers
have reported many positive experimental results by adopting cognitive load
theory and examples teaching method.
However, ―expertise reversal effect‖ is a well-known side effect of examples
teaching method. In order to strengthen this point, we use digital game-based
learning system in this thesis. There are also many researches have revealed that
digital game-based learning system improves students’ learning motivation and
concentration. This thesis combined the advantages of examples teaching method
and digital game-based learning system, the influence of learning outcome,
cognitive load, and experience of flow will be addressed and discussed in the
following chapter. Quasi experimental research is used in this thesis. Specific
RPG with (experiment group) and without (controlling group) examples teaching
method were used to test the influence of the strategies in gamed-based learning
system for junior-high-school students and understand the effects on their
learning achievement and cognitive loading. The results show that both
experiment group and controlling group got better performance after learning
from RPG. The learning system with and without examples teaching method
both improved their learning satisfaction. Students learned with examples
teaching method improve even more than those without examples teaching
method. Furthermore, the ―mental effort‖ for those students with better learning
ability showed much lower than those with worse learning ability. Besides, it
reveals that the cognitive loading reduced largely after learning with RPG, which
means this kind of games help students learn happily and can also improve their
understanding.

目次
摘 要 ........................................................................................................ i
Abstract ...................................................................................................... ii
目 次 .................................................................................................... iv
表次 .................................................................................................... vi
圖次 .................................................................................................... vii
第一章 緒論 ............................................................................................. 1
第一節 研究動機與背景 ....................................................................... 1
第二節研究目的與待答問題 ............................................................... 2
第三節名詞解釋 ................................................................................... 3
第四節研究範圍與限制 ....................................................................... 4
第二章 文獻探討 ...................................................................................... 6
第一節 濃度迷思概念 ........................................................................... 6
第二節 認知負荷理論的意涵與來源 .................................................... 9
第三節 範例教學策略 ......................................................................... 10
第四節 數位遊戲式學習與數學教育 .................................................. 12
第三章研究方法 .................................................................................... 17
第一節 研究設計架構 ......................................................................... 17
第二節 研究流程 ................................................................................. 18
第三節 研究方法設計 ......................................................................... 19
第四節 研究對象 ................................................................................. 20
第五節 研究假設 ................................................................................. 20
第六節 數位教材設計 ......................................................................... 21
第七節 研究程序 ................................................................................. 30
第八節 研究工具 ................................................................................. 30
第四章研究結果與討論 ........................................................................ 32
第一節 有效樣本 ................................................................................. 32
第二節 學習成效分析 ......................................................................... 32
第三節 認知負荷分析 ......................................................................... 33
第四節 心流經驗分析 ......................................................................... 35
第五節 半開放式問卷分析 ................................................................. 35
第五章 結論與建議 ................................................................................ 39
第一節 結論 ........................................................................................ 39
第二節 建議 ........................................................................................ 40
參考文獻 ................................................................................................. 41
壹、 中文部分 .................................................................................... 41
貳、 西文部分 .................................................................................... 42
附錄一濃度概念前測測驗卷 ................................................................ 48
附錄二濃度概念後測測驗卷 ................................................................ 50
附錄三數學教學實驗後問卷 ................................................................ 52
參考文獻
壹、 中文部分
王子華、楊凱悌(2015)。有效行動學習課程教學模式之設計與效益評估-以評量為中心的設計。課程與教學,18(1),1-30。
林立群、顏晴榮(2013)。多媒體組合方式對學習成效之影響-以國小三年級數學例行性問題解決為例。科學教育,365(12),2-18。
吳昭容、楊忠璇(2014)。範例呈現方式對不同能力國中生幾何解題學習的影響。發表於第十屆台灣數位學習發展研討會。臺北:國立臺灣師範大學,11,13-14。
吳昭容、楊忠璇、鄭英豪(2014)。策略提示對不同能力國中生幾何解題學習的影響。發表於第 30 屆科學教育國際研討會。臺北:國立臺灣師範大學,12,5-6。
凃金堂(2011)。運用「範例(worked-out example)」在國小數學問題解決的教學實驗研究,教育心理學報,43(1),25-49。
陳密桃(2003)。認知負荷理論及其對教學的啟示。教育學刊,21,29-51。
陳雅美(2011)。數位科技應用於幼兒數學學習之探討-我對於「坊間幼兒數學相關網站和遊戲光碟」的一些想法。國民教育;51 卷5 期,P77-81。
陳秀湘(2011)。資訊科技融入國一學生數學補救教學之研究-以二元一次方程式圖形為例。未出版之碩博士論文,國立嘉義大學,數學教育研究所,嘉義。
張春興(1996)。教育心理學-三化取向的理論與實踐。臺北:東華書局。
許慈芳(2003)。國中生濃度問題及其同構問題之研究。未出版之碩博士論文,國立高雄師範大學,數學系,高雄。
許家驊(2011)。歷程導向設計及學習策略中介教導對個體不同層次數學解題學習潛能開展效益影響之動態評量研究。教育心理學報,43(1),127-154。
黃克文(1996)。認知負荷與個人特質及學習成就之關聯。未出版之碩博士論文,國立台北師範學院,台北。
黃佑家、吳慧敏、黃暉娟、譚寧君、曾世綺、曾建銘(2014)。以工作範例學習平行四邊形面積:後設認知問題對學習的影響。臺灣數學教育期刊,1(1),19-47。
黃一泓、虞翔(2014)。不同範例與解題組合對初學者在學習上的影響,教育心理學報,45(4),497-515。
黃如淳(2014)。多媒體教學融入合作學習在線型函數單元對七年級學生學習成效的影響。未出版之碩博士論文,國立臺南大學,應用數學系碩士班,台南。
教育部(2014)。103 年國民中小學12 年國教課程綱要。
楊玲惠、翁頂升、楊德清(2015)。發展數位教材輔助學生學習之研究—以科大學生之統計教學課程為例。臺灣數學教育期刊,2(1),1-22。
蔡福興、游光昭、蕭顯勝(2008)。從新學習遷移觀點發掘數位遊戲式學習之價值。課程與教學季刊,11(4),237-278。
貳、 西文部分
Atkinson, R., Derry, S., Renkl, A., & Wortham, D. (2000). Learning form examples:
Instructional principles form the worked examples research. Review of Educational
Research, 70, 181-214.
Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a
mathematical domain. Applied Cognitive Psychology, 20, 287-298.
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. W. (2000). Learning from
examples: Instructional principles from the worked examples research. Review of
Educational Research, 70, 181–214.
Betrancourt, M.(2005). The Animation and Interactivity Principles in Multimedia
learning. Cambridge handbook of multimedia learning(pp.287-296). New York:
Cambridge University Press.
Berthold, K., & Renkl, A. (2010). How to foster active processing of explanations in
instructional communication. Educational Psychology Review,22(1), 25-40.
Brusilovsky, P. (2003). Adaptive navigation support in educational hypermedia: The
role of student knowledge level and the case for meta-adaptation. British Journal
Educational Technology, 34, 487–497.
Cigdem, A. (2015). Analysis of Research on Mathematics Anxiety in Selected
Journals(200-2013). Computers & education, 177, 118-121.
Choi, H. J.、Johnson, S. D. (2005)。The effect of context-based video instruction on
learning and motivation in oline courses。The American Journal of Distance
Education, 19(4), 215~227。
Carroll, W. (1994). Using worked examples as an instructional support in the algebra
classroom. Journal of Educational Psychology, 86, 360-367.
Chen, C.-M, Wang, J.-Y., & Chen, Y.-C. (2014). Facilitating English-language reading
performance by a digital reading annotation system with self-regulated learning
mechanisms. Educational Technology & Society, 17 (1), 102– 114.
Clarke, T., Ayres, R., & Sweller, J. (2005). The impact of sequencing and prior
knowledge on leaning mathematics through spreadsheet applications. Educational
Technology Research and Development, 53, 15-24.
Clark, R., Nguyen, F., & Sweller, J. (2006). Efficiency in Learning: Evidence-based
guidelines to manage cognitive load. John Wiley & Sons, Inc. 26-41.
Eylon, B., & Helfman, J. (1982). Deductive and analogical problem- solving processes
in physics. New York: American Educational Re- search Association (AERA).
Eklund, J., & Sinclair, K. (2000). An empirical appraisal of the effectiveness of adaptive
interfaces for instructional systems. Educational Technology & Society, 3, 165–
177.
Frohberg, D., Göth, C., & Schwabe, G. (2009). Mobile Learning projects – A critical
analysis of the state of the art. Journal of Computer Assisted Learning, 25, 307–
331.
Fengfeng, Ke. (2008). A case study of computer gaming for math: Engaged learning
from gameplay? Computers & education, 51(4), 1609-1620.
Fengfeng, Ke. (2014). An implementation of design-based learning through creating
educational computer games: A case study on mathematics learning during design
and computing Computers & education, 73, 26-39.
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, Motivation, and Learning: A
Research and Practice Model. Simulation & Gaming, 33(4), 441-467. doi:
10.1177/1046878102238607
Girard, C., Ecalle, J., & Magnan, A. (2012). Serious games as new educational tools:
How effective are they? A meta-analysis of recent studies. Journal of Computer
Assisted Learning, 29(3), 207-219.
Gick, M. L., & Holyack, K. J. (1983). Schemainduction and analogical transfer.
Cognitive Psychology, 15, 1-38. doi:10.1016/0010-0285(83)90002-6
Hung, C. M., Huang, I., & Hwang, G. J. (2014). Effects of digital game-based learning
on students' self-efficacy, motivation, anxiety, and achievements in learning
mathematics. Journal of Computers in Education, 1(2), 151-166.
Haiyan Bai, Wei Pan, Astusi Hirumi, Mansureh Kebritchi. (2012). Assessing the
effectiveness of a 3-D instructional game on improving mathematics achievement
and motivation of middle school students. British Journal of Educational
Technology, 43(6), 993-1003.
Hwang, G. J., & Chang, H. F. (2011).A formative assessment-based mobile learning
approach to improving the learning attitudes and achievements of students.
Computers & education, 56(4), 1023-1031.
Judith ter Vrugte, Ton de Jong, Sylke Vandercruysse, Pieter Wouters, Herre van
Oostendorp, Jan Elen. (2016)。Computer game-based mathematics education:
Embedded faded worked examples facilitate knowledge acquisition。Computers &
education,http://dx.doi.org/10.1016/j.learninstruc.2016.11.007。
J. ter Vrugte, T. de Jong, P. Wouters, S. Vandercruysse, J. Elen, H. van Oostendorp.
(2015).When a game supports prevocational math education but integrated
reflection does not. Journal of Computer Assisted Learning, 31, 462–480.
Kuo, M. J. (2007). How does an online game based learning environment promote
students’ intrinsic motivation for learning natural science and how does it affect
their learning outcomes? Proceedings of the First IEEE International Workshop on
Digital Game and Intelligent Toy Enhances Learning, 135-143.
Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model.
The Internet and Higher Education, 8(1), 13-24. doi: DOI:
0.1016/j.iheduc.2004.12.001
Kirriemuir, J., MaFarlane, A. (2006). Literature review in games and learning.
Futurelab Series: Report 8.Bristol, UK: Futurelab.
Kristian, K. (2005). Digital game-based learning: Towards an experiential gaming
model. Internet and Higher Education, 8, 13-24.
Kalyuga, S., Ayres, P., Chandler, P. & Sweller, J. (2003). The Expertise Reversal
Effect. Educational Psychologist, 38 (1), 23-31.
Lopez-Morteo, G., & López, G. (2007). Computer support for learning mathematics: A
learning environment based on recreational learning objects. Computers &
Education, 48(4), 618-641. doi: DOI: 10.1016/j.compedu.2005.04.014
Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The
effect of example format and generating self-explanations. Cognition and
Instruction, 16, 173-199.
Maloney, D. (2011). An overview of physics education research on problem solving.
Getting Started in PER (Vol. 2). URL (last checked 1 May 2012).
http://www.compadre.org/Repository/document/ServeFile.cfm?ID=1
1457&DocID=2427
MMath Teresa Coimbra, Teresa Cardoso, Artur Mateus(2015). Augmented Reality: An
Enhancer for Higher Education Students in Math's Learning? Computers &
Education, 67, 332-339.
O’Leary, S., Diepenhorst, L., & Churley-Strom, R. (2005). Educational games in an
obstetrics and gynecology core curriculum. American Journal of Obstetrics and
Gynecology, 193, 1848-1851.
Perrotta, C., Featherstone, G., Aston, H. and Houghton, E. (2013). Game-based
Learning: Latest Evidence and Future Directions.
Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1),
21-21.
Prensky, M. (2007). Digital game-based learning. St. Paul, MN: Paragon House
Pivec, M., Dziabenko, O., &Schinnerl, I.(2004). Game-Based Learning in Universities
and Lifelong Learning: "UniGame: Social Skills and Knowledge Training" Game
Concept. Journal of Universal Computer Science, 10(1), 14-26.
Quilici, J. L., & Mayer, R. E. (1996). Role of examples in how students learn to
categorize statistics word problems. Journal of Educational Psychology, 88, 144-
161.
Renkl, A. (1997). Learning from worked-out examples: A study on individual
differences. Cognitive Science, 21(1), 1-29.
Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out
examples: The effects of example variability and elicited self-explanations.
Contemporary Educational Psychology, 23, 90-108.
Renkl, A. (1999). Learning mathematics from worked-out examples: analysing and
fostering self-explanations. European Journal of Psychology of Education, 14,
477–488.
Randel, J., Morris, B., Wetzel, C. D., & Whitehall, B. (1992). The effectiveness of
games for educational purposes: A review of recent research. Simulation &
Gaming, 23(3), 261-276.
Renkl, A. (2011). Instruction based on examples. In R. E. Mayer & P. A. Alexander
(2011). Handbook of research on learning and instruction (pp. 272-295). New
York, NY: Routledge.
Renkl, A. (2014). Toward an instructionally oriented theory of example‐ based learning.
Cognitive science, 38(1), 1-37.
Sevindir, H. K.,& Yazici, C., & Yazici, V. (2014). Mathematics Anxiety of Secondary
School Students: A Case Study for Kocaeli Area. Computers & education, 152(7),
630-636.
Sylke Vandercruysse, Judith ter Vrugte, Ton de Jong, Pieter Wouters, Herre van
Oostendorp, Lieven Verschaffel, Mariola Moeyaerte, Jan Elen. (2016). The
effectiveness of a math game: The impact of integrating conceptual clarification as
support. Computers & education, 64, 21-33.
Sevindir, H. K.,& Yazici, C., & Yazici, V. (2014). Mathematics Anxiety: A Case Study
for Kocaeli University. Computers & education, 512(7), 637-641.
Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive
Architecture and Instructional Design. Educational Psychology Review, 10(3), 251-
297.
Sankey, M. D. (2003). Visual and multiple representation in learning materials :An
issue of literacy. 7.
Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2, 59-89.
Sorden, S. D. (2005). A cognitive approach to instructional design for multimedia
learning. Informing Science: International Journal of an Emerging Transdiscipline,
8, 263-279.
Tu, C. T. (2011). An instructional experiment: Using worked-out examples in
mathematics problem-solving of elementary school students. Bulletin of
Educational Psychology, 43(1), 25-50.
Wu-Yuin Hwang, J.-H. S., Jian-Jie Dung and Yi-Shien Su. (2007). A Study of Virtual
Manipulative and Whiteboard System for Improving Multi-presentation
Transformation of Geometry Problem Solving. TECHNOLOGIES FOR ELEARNING AND DIGITAL ENTERTAINMENT, 4469/2007, 12. doi:
10.1007/978-3-540-73011-8_44
Wang, T. H. (2010). Web-based dynamic assessment: Taking assessment as teaching and
learning strategy for improving students’ e-Learning effectiveness. Computers &
Education, 54(4), 1157-1166.
Wang, T. H. (2011). Implementation of web-based dynamic assessment in facilitating
junior high school students to learn mathematics. Computers & Education, 56(4),
1062-1071.
Wittwer, J., & Renkl, A. (2010). How effective are instructional explanations in
example-based learning? A meta-analytic review. Educational Psychology Review,
22(4), 393-409.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top