(3.238.186.43) 您好!臺灣時間:2021/03/01 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王妘伃
研究生(外文):Yun-Yu Wang
論文名稱:從服務科學的觀點探討社群商務接受意圖:以住房社群為例
論文名稱(外文):Factors Influence Acceptance of Accommodation Community:A Perspective of Service Science
指導教授:王淑玲王淑玲引用關係黃秀美黃秀美引用關係
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:服務科學社群商務計劃行為理論KANO二維服務品質巨量資料
外文關鍵詞:Service scienceSocial communityTBP modelKANO modelBig data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據美國市場研究機構eMarketer調查顯示全國網路社群使用人數持續成長,各行各業為了拓展商機、增進企業與顧客的互動便開始著手經營社群商務。國際上著名的住房社群網站Airbnb在2015年,社群網站使用人數已超過1,700萬人,如今,住房社群如雨後春筍般地出現,其中提升服務品質,藉此維持顧客忠誠度顯得越來越重要。
本研究從服務科學的角度進行研究探討,實驗一(接受意圖實驗測試)以計畫行為理論(Theory of Planned Behavior, TPB)與PZB服務品質模式及過去相關文獻提出研究構面,藉由問卷調查分析進行實證研究,從消費者的立場探討社群商務接受意圖;實驗二(KANO服務品質要素),使用科技接受模式(Technology Acceptance Model, TAM)與KANO二維服務品質模式,針對住房社群網站進行服務品質要素歸類,可幫助社群公司瞭解消費者對於網站功能之服務要素屬性。
實驗一採用AMOS 24、SPSS 20與PLS2.0 統計軟體進行驗證分析,所蒐集樣本共1104份,研究驗證與假說檢定結果表示「接受意圖」、「知覺玩興」、「知覺行為控制」、「功能性服務品質」、「信任、「社會效益」均有顯著影響效果;「互動性服務品質、「顧客價值」則無顯著影響效果。
實驗二採用KANO二維服務品質模式分析住房社群中,以巨量資料分析為基礎的「住房搜尋介面」、「視覺化搜尋介面」、「地圖式互動搜尋介面」與「住房投資決策分析工具」之便利性、知覺有用性、知覺易用性、使用態度與行為意圖,總收樣本共107份,分析結果顯示,在20個問項中,一維品質(O)要素的共有15項,為魅力品質(A)與無差異品質要素(I),各有2項,必須要素品質(M),共1項。
最後,運用Airbnb open dataset進行J48決策樹分析,分析結果可幫助消費者瞭解國家地區與其住房價格、房型之間的關聯性,輔助消費者進行訂房決策。本研究之相關分析結果有助於了解消費者的需求,未來將有助於商務社群服務品質的提昇。
According to the survey of US eMarketer survey, the number of social community continued to grow. Various industries have started to apply social community for spread their business opportunities, and enhance their relationship with customers. The number of users of famous accommodation community website Airbnb has grown more than 17 million people in 2015. Nowadays, the accommodation community has sprung up rapidly, therefore it is more and more important to improve the quality of service for maintain customer loyalty.
This study from the perspective of service science, and applies an application-oriented perspective of service science for studying the social community websites. Firstly, this study according to forward proposed research model and using the structure of Theory of Planned Behavior, and PZB service quality model for empirical study. An empirical study of the factors affecting users'' acceptance intention use of the social community, from the viewpoint of customers, is presented in this study. Secondly, this study further applies the Technology Acceptance Model and KANO service quality model for classifying service quality attributes of accommodation community, the results can help the enterprises to understand the critical service quality factors, and for further improving the service quality of the social community.
In study I, this study used AMOS24、SPSS 20 and PLS2.0 statistical software for testing the research framework and hypotheses. This study has collected 1104 samples, and the results show that perceived playfulness, perceived behavioral control, functional service quality, trust, and social benefit are all significant positive effect on the acceptance intention use. However, the interactive service quality, and the customer perceived value are no significant positive effect on the acceptance intention use.
In study II, this study used KANO service quality model for further analyzing the service quality attributes of the big data of searching Interface, the visual search Interface, map Interactive search interface, the room type price analysis tool, and the housing investment decision analysis tool of the accommodation community website. The study has collected 107 samples, and the analysis results show that there are 20 items of One-Dimensional Quality, 2 items of Attractive Quality, 2 items of Indifferent Quality and 1 item of Must-Be Quality.
Finally, this study purposes many future directions, the study also purposes a method for applying the Airbnb open data set, and through the big data analysis function to support consumer for understanding the room prices and room types of an area for users'' book room decision making.
The results of this study will help accommodation community enterprises to understand customers’ needs and help to improve the quality of service.
摘要 i
Abstract ii
誌謝 iv
目次 v
圖目次 viii
表目次 ix
壹、 緒論 1
一、 研究背景與動機 1
二、 研究目的 2
三、 研究之重要性 3
四、 研究流程 4
貳、 文獻探討 5
一、 服務、服務品質與服務科學 5
二、 社群商務(social commerce) 13
三、 協同消費(collaborative consumption) 13
四、 巨量資料(big data) 14
五、 資訊視覺化(infographics) 15
六、 計劃行為理論(Theory of Planned Behavior, TBP) 16
七、 科技接受模式(Technology Acceptance Model, TAM) 17
參、 實驗一:接受意圖實驗測試 19
一、 研究模型 19
二、 研究假說 20
三、 變數操作型定義與衡量 22
四、 研究設計 24
五、 研究之資料蒐集與研究對象 24
六、 統計評估方法 27
肆、 實驗一之資料分析與結果 29
一、 先前試驗 29
二、 實驗一之分析結果 33
伍、 實驗二:KANO服務品質要素 42
一、 研究架構 42
二、 研究模型-KANO二維服務品質模型 42
三、 變數操作型定義與衡量 44
四、 研究設計 45
五、 研究之資料蒐集與研究對象 50
六、 統計評估方法 50
陸、 實驗二之資料分析結果 51
一、 敘述性統計 51
柒、 討論 56
一、 實驗一討論 56
二、 實驗二討論 59
三、 建議與未來研究:住房社群訂房決策服務功能 60
捌、 結論 63
一、 結論 63
二、研究限制 64
參考文獻 65
附錄一 75
附錄二 77
Adrodegari, F., Alghisi, A., Ardolino, M., &Saccani, N. (2015). From Ownership to Service-oriented Business Models: A Survey in Capital Goods Companies and a PSS Typology. Procedia CIRP, 30, 245–250. https://doi.org/10.1016/j.procir.2015.02.105
Ahn, T., Ryu, S., &Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263–275. https://doi.org/http://dx.doi.org/10.1016/j.im.2006.12.008
Airbnb. (2015). Airbnb Summer Travel Report: 2015 - The Airbnb Blog.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11–39).
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Al-Sabbahy, H. Z., Ekinci, Y., &Riley, M. (2004). An investigation of perceived value dimensions: Implications for hospitality research. Journal of Travel Research, 42(3), 226–234.
Albinsson, P. A., &Yasanthi Perera, B. (2012). Alternative marketplaces in the 21st century: Building community through sharing events. Journal of Consumer Behaviour, 11(4), 303–315.
Aldana, J. F. (2017). Big Data. New approaches of modelling and management. Computer Standards & Interfaces. 54(2), 61–63. https://doi.org/10.1016/j.csi.2017.03.006
Alzahrani, L., Al-Karaghouli, W., &Weerakkody, V. (2017). Analysing the critical factors influencing trust in e-government adoption from citizens’ perspective: A systematic review and a conceptual framework. International Business Review, 26(1), 164–175. https://doi.org/10.1016/j.ibusrev.2016.06.004
Bagozzi, R. P., &Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.
Barile, S., &Polese, F. (2010). Smart service systems and viable service systems: Applying systems theory to service science. Service Science, 2(1–2), 21–40.
Belk, R. (2010). Sharing. Journal of Consumer Research, 36(5), 715–734.
Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595–1600. https://doi.org/10.1016/j.jbusres.2013.10.001
Bentler, P. M. (1983). Simultaneous equation systems as moment structure models: With an introduction to latent variable models. Journal of Econometrics, 22(1–2), 13–42.
Bishop, K., Bolan, G., Bowen, D., Cromack, C., Evans, S., Fisk, R. P., …Lemmink, J. (2008). Succeeding through service innovation: a service perspective for education, research, business and government. (pp.1–31).
Bo, Z., Huan, Z., Meizi, L., Qin, Z., &Jifeng, H. (2017). Trust Traversal: A trust link detection scheme in social network. Computer Networks, 120, 105–125. https://doi.org/10.1016/j.comnet.2017.04.016
Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316.
Botsman, R., &Rogers, R. (2011). What’s mine is yours: how collaborative consumption is changing the way we live. (pp.1–304).
Browne, M. W., Cudeck, R., Bollen, K. A., &Long, J. S. (1993). Alternative ways of assessing model fit. Sage Focus Editions, 154, 136.
Buczynski, B. (2013). Sharing is good: How to save money, time and resources through collaborative consumption. (pp 1–192).
Chen, S.-Y. (2016). Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system. Transportation Research Part A: Policy and Practice, 88, 58–72. https://doi.org/10.1016/j.tra.2016.03.008
Chen, Y.-J. (2015). The Moderating Effect of the Brand Image on the Relationship of LINE Official Account Users’ Intention to Accept the Message and Purchase Intention.
Cheung, C. M. K., Xiao, B. S., &Liu, I. L. B. (2014). Do actions speak louder than voices? The signaling role of social information cues in influencing consumer purchase decisions. Decision Support Systems, 65, 50–58.
Chiou, Y.-C., &Chen, Y.-H. (2012). Service quality effects on air passenger intentions: a service chain perspective. Transportmetrica, 8(6), 406–426.
Csikszentmihalyi, M. (1975). Play and intrinsic rewards. Journal of Humanistic Psychology. 15(3), 41–63.
Davis, F. D., Bagozzi, R. P., &Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1003.
Davis, F. D., Bagozzi, R. P., &Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of Applied Social Psychology, 22(14), 1111–1132.
deGrandbois, Y., &deGrandbois, Y. (2016a). Service, Systems, and Science. In Service Science and the Information Professional Chapter 1 (pp.1–26). https://doi.org/10.1016/B978-1-84334-649-4.00001-9
deGrandbois, Y., &deGrandbois, Y. (2016b). The Story of Service Science. In Service Science and the Information Professional. Chapter 2 (pp.27–46). https://doi.org/10.1016/B978-1-84334-649-4.00002-0
eMarketer. (2016). Worldwide Social Network Users: eMarketer’s Updated Estimates and Forecast for 2015–2020. Retrieved from https://www.emarketer.com/Report/Worldwide-Social-Network-Users-eMarketers-Updated-Estimates-Forecast-20152020/2001917
Enders, A., Hungenberg, H., Denker, H.-P., &Mauch, S. (2008). The long tail of social networking.: Revenue models of social networking sites. European Management Journal, 26(3), 199–211.
Fishbein, M., &Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Journal of Philosophy & Rhetoric, 10(2), 130–132.
Fitzsimmons, J. A., Fitzsimmons, M. J., &Bordoloi, S. (2006). Service management: Operations, strategy, and information technology.(pp. 1–541).
Freitag, J. D., &Haywood, J. (2015). Digging to the core of Airbnb’s Big Apple data. Retrieved from http://www.hotelnewsnow.com/Articles/27290/Digging-to-the-core-of-Airbnbs-Big-Apple-data
Gallarza, M. G., Gil‐Saura, I., &Holbrook, M. B. (2011). The value of value: further excursions on the meaning and role of customer value. Journal of Consumer Behaviour, 10(4), 179–191.
Gandomi, A., &Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Giovanis, A. N., &Athanasopoulou, P. (2017 March 18). Consumer-brand relationships and brand loyalty in technology-mediated services. Journal of Retailing and Consumer Services. https://doi.org/10.1016/j.jretconser.2017.03.003
Grönroos, C. (1990). Service management and marketing: Managing the moments of truth in service competition. (pp. 1–298).
Guttentag, D. (2015). Airbnb: disruptive innovation and the rise of an informal tourism accommodation sector. Current Issues in Tourism, 18(12), 1192–1217.
Hajli, M. N. (2014). The role of social support on relationship quality and social commerce. Technological Forecasting and Social Change, 87, 17–27. https://doi.org/10.1016/j.techfore.2014.05.012
Hajli, N., Sims, J., Zadeh, A. H., &Richard, M.-O. (2017). A social commerce investigation of the role of trust in a social networking site on purchase intentions. Journal of Business Research, 71, 133–141. https://doi.org/10.1016/j.jbusres.2016.10.004
Hamari, J., Hanner, N., &Koivisto, J. (2017). Service quality explains why people use freemium services but not if they go premium: An empirical study in free-to-play games. International Journal of Information Management, 37(1), 1449–1459. https://doi.org/10.1016/j.ijinfomgt.2016.09.004
Hamari, J., Sjöklint, M., &Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the Association for Information Science & Technology, 67(9), 2047–2059.
Hau, Y. S., &Kang, M. (2016). Extending lead user theory to users’ innovation-related knowledge sharing in the online user community: The mediating roles of social capital and perceived behavioral control. International Journal of Information Management, 36(4), 520–530. https://doi.org/10.1016/j.ijinfomgt.2016.02.008
Hau, Y. S., &Kim, Y.-G. (2011). Why would online gamers share their innovation-conducive knowledge in the online game user community? Integrating individual motivations and social capital perspectives. Computers in Human Behavior, 27(2), 956–970.
Hellwig, K., Morhart, F., Girardin, F., &Hauser, M. (2015). Exploring different types of sharing: A proposed segmentation of the market for “sharing” businesses. Psychology & Marketing, 32(9), 891–906.
Hoyle, R. H. (1995). Structural equation modeling: Concepts, issues, and applications. Sage.
Hsieh, S. H., &Tseng, T. H. (2017). Playfulness in mobile instant messaging: Examining the influence of emoticons and text messaging on social interaction. Computers in Human Behavior, 69, 405–414. https://doi.org/10.1016/j.chb.2016.12.052
Huijts, N. M. A., Molin, E. J. E., &vanWee, B. (2014). Hydrogen fuel station acceptance: A structural equation model based on the technology acceptance framework. Journal of Environmental Psychology, 38, 153–166. https://doi.org/10.1016/j.jenvp.2014.01.008
Hung, C.-L. (2017). Online positioning through website service quality: A case of star-rated hotels in Taiwan. Journal of Hospitality and Tourism Management, 31, 181–188. https://doi.org/10.1016/j.jhtm.2016.12.004
Hung, S.-Y., Tsai, J. C.-A., &Chou, S.-T. (2016). Decomposing perceived playfulness: A contextual examination of two social networking sites. Information & Management, 53(6), 698–716. https://doi.org/10.1016/j.im.2016.02.005
Janssen, M., van derVoort, H., &Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338–345. https://doi.org/10.1016/j.jbusres.2016.08.007
Jin, X., Zong, S., Li, Y., Wu, S., Yin, W., &Ge, W. (2015). A Domain Knowledge Based Method on Active and Focused Information Service for Decision Support within Big Data Environment. Procedia Computer Science, 60, 93–102. https://doi.org/10.1016/j.procs.2015.08.108
Kano, N., Seraku, N., Takahashi, F., &Tsuji, S. (1984). Attractive quality and must-be quality.
Kastalli, I. V., &VanLooy, B. (2013). Servitization: Disentangling the impact of service business model innovation on manufacturing firm performance. Journal of Operations Management, 31(4), 169–180. https://doi.org/10.1016/j.jom.2013.02.001
Kim, J., Yoon, Y., &Zo, H. (2015). Why people participate in the sharing economy: A social exchange perspective. PACIS 2015 Proceedings (pp. 1–76).
King, C., So, K. K. F., &Grace, D. (2013). The influence of service brand orientation on hotel employees? attitude and behaviors in China. International Journal of Hospitality Management, 34, 172–180. https://doi.org/10.1016/j.ijhm.2013.03.004
Kowalkowski, C., Windahl, C., Kindstr?m, D., &Gebauer, H. (2015). What service transition? Rethinking established assumptions about manufacturers’ service-led growth strategies. Industrial Marketing Management, 45, 59–69. https://doi.org/10.1016/j.indmarman.2015.02.016
Lai, C. Y., &Hung, S. (2011). Factors Influencing User Acceptance of Social Commerce: A Perspective of Service Science. Journal of e-Business, 17(4), 423–458.
Lengel, R. H., & Daft, R. L. (1984). An exploratory analysis of the relationship between media richness and managerial information processing (No. TR-DG-08-ONR). TEXAS A AND M UNIV COLLEGE STATION DEPT OF MANAGEMENT.
Li, Y.-M., Wu, C.-T., &Lai, C.-Y. (2013). A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship. Decision Support Systems, 55(3), 740–752. https://doi.org/10.1016/j.dss.2013.02.009
Lim, S. S., &Tkaczynski, A. (2017). Origin and money matter: The airline service quality expectations of international students. Journal of Hospitality and Tourism Management, 31, 244–252. https://doi.org/10.1016/j.jhtm.2017.03.001
Lin, C. S., Wu, S., &Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683–693. https://doi.org/http://dx.doi.org/10.1016/j.im.2004.04.003
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., &Barton, D. (2012). Big data. The Management Revolution. Harvard Bus Rev, 90(10), 61–67.
McKnight, D. H., Choudhury, V., &Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334–359.
Möhlmann, M. (2015). Collaborative consumption: determinants of satisfaction and the likelihood of using a sharing economy option again. Journal of Consumer Behaviour, 14(3), 193–207.
Moon, J.-W., &Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230.
Neely, A. (2007). Succeeding through service innovation: A service perspective for education, research, business and government. In Cambridge Service Science, Management, and Engineering Symposium, Cambridge. IBM and University of Cambridge.
Oh, S. H., Kim, Y. M., Lee, C. W., Shim, G. Y., Park, M. S., &Jung, H. S. (2009). Consumer adoption of virtual stores in Korea: Focusing on the role of trust and playfulness. Psychology & Marketing, 26(7), 652–668.
Olszak, C. M. (2016). Toward Better Understanding and Use of Business Intelligence in Organizations. Information Systems Management, 33(2), 105–123.
Ostrom, A. L., Bitner, M. J., Brown, S. W., Burkhard, K. A., Goul, M., Smith-Daniels, V., …Rabinovich, E. (2010). Moving forward and making a difference: research priorities for the science of service. Journal of Service Research, 13(1), 4–36.
Ostrom, A. L., Parasuraman, A., Bowen, D. E., Patricio, L., &Voss, C. A. (2015). Service research priorities in a rapidly changing context. Journal of Service Research, 18(2), 127–159.
Parasuraman, A., Zeithaml, V. A., &Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. The Journal of Marketing, 41–50.
Parasuraman, A., Zeithaml, V. A., &Berry, L. L. (1988). Servqual. Journal of Retailing, 64(1), 12–40.
Perez, C., Birregah, B., &Lemercier, M. (2013). A smartphone-based online social network trust evaluation system. Social Network Analysis and Mining, 3(4), 1293–1310.
Phipps, D. L., Beatty, P. C. W., &Parker, D. (2015). Standard deviation? The role of perceived behavioural control in procedural violations. Safety Science, 72, 66–74. https://doi.org/10.1016/j.ssci.2014.08.009
Pradela, A. (2015). Quality of Graduates’ Preparation for Labour Market – A ServQual Analysis. Procedia - Social and Behavioral Sciences, 174, 1671–1677. https://doi.org/10.1016/j.sbspro.2015.01.820
Quach, T. N., Thaichon, P., &Jebarajakirthy, C. (2016). Internet service providers’ service quality and its effect on customer loyalty of different usage patterns. Journal of Retailing and Consumer Services, 29, 104–113. https://doi.org/10.1016/j.jretconser.2015.11.012
Rod, M., &Ashill, N. J. (2013). The impact of call centre stressors on inbound and outbound call-centre agent burnout. Managing Service Quality: An International Journal, 23(3), 245–264.
Schutt, R., &O’Neil, C. (2013). Doing data science: Straight talk from the frontline. (pp. 1–408).
Serrano-Cinca, C., Fuertes-Callén, Y., &Gutiérrez-Nieto, B. (2010). Internet positioning and performance of e-tailers: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 237–248. https://doi.org/10.1016/j.elerap.2009.09.001
Stefano, N. M., Filho, N. C., Barichello, R., &Sohn, A. P. (2015). A Fuzzy SERVQUAL Based Method for Evaluated of Service Quality in the Hotel Industry. Procedia CIRP, 30, 433–438. https://doi.org/10.1016/j.procir.2015.02.140
Stephen, A. T., &Toubia, O. (2010). Deriving value from social commerce networks. Journal of Marketing Research, 47(2), 215–228.
Storbacka, K., Windahl, C., Nenonen, S., &Salonen, A. (2013). Solution business models: Transformation along four continua. Industrial Marketing Management, 42(5), 705–716. https://doi.org/10.1016/j.indmarman.2013.05.008
Tussyadiah, I. P. (2016). Factors of satisfaction and intention to use peer-to-peer accommodation. International Journal of Hospitality Management, 55, 70–80. https://doi.org/10.1016/j.ijhm.2016.03.005
VanBaalen, P., Bloemhof-Ruwaard, J., &VanHeck, E. (2005). Knowledge Sharing in an Emerging Network of Practice:: The Role of a Knowledge Portal. European Management Journal, 23(3), 300–314.
Venkatesh, V., &Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Warsame, M. H., &Ireri, E. M. (2016). Does the theory of planned behaviour (TPB) matter in Sukuk investment decisions? Journal of Behavioral and Experimental Finance, 12, 93–100. https://doi.org/10.1016/j.jbef.2016.10.002
Winters, E., &Ha, S. (2012). Consumer evaluation of customer loyalty programs: The role of customization in customer loyalty program involvement. Journal of Global Scholars of Marketing Science, 22(4), 370–385.
Wu, B., &Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221–232. https://doi.org/10.1016/j.chb.2016.10.028
Yu, J., Lee, H., Ha, I., &Zo, H. (2017). User acceptance of media tablets: An empirical examination of perceived value. Telematics and Informatics, 34(4), 206–223. https://doi.org/10.1016/j.tele.2015.11.004
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of Marketing, 52, 2–22.
Zhou, Z.-H., Chawla, N.V, Jin, Y., &Williams, G. J. (2014). Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]. IEEE Computational Intelligence Magazine, 9(4), 62–74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔