跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許祖祐
研究生(外文):Tzu-Yu Hsu
論文名稱:具工作應力裂縫之鋼纖維混凝土梁鹽霧加速劣化後力學行為實驗設計
論文名稱(外文):Expreimental Design for Mechanical Behavior of Deteriorated SFRC Beam with Working Stress Cracks by Accelerated Salt Spray Test
指導教授:廖文正廖文正引用關係
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:181
中文關鍵詞:鋼纖維混凝土工作應力開裂混凝土鹽霧加速劣化試驗氯離子殘餘撓曲強度
外文關鍵詞:Steel-fiber concreteWorking stressCracked ConcreteAccelerated salt Spray testChloride ionResidual flexural strength
相關次數:
  • 被引用被引用:2
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鋼纖維混凝土於ACI318-08中已允許使用於RC結構物中,取代最少剪力鋼筋;惟台灣處於高溫高濕的環境,大氣中帶有鹽分,且結構物在使用年限中時常受工作載重產生裂縫,使得外界氯離子能直接侵入混凝土內部,降低建物耐久性,尤其當鋼纖維因為外界氯離子侵入而鏽蝕時,會加速構件劣化。
本研究透過不同水灰比及添加不同體積取代率的鋼纖維,設計相關實驗來探討混凝土水灰比高低及高強度鋼纖維混凝土梁受工作應力產生裂縫後之耐久性行為。其中實驗分成三大步驟,首先為預裂試驗,再來是鹽霧加速劣化試驗,最後是抗彎試驗及氯離子濃度檢測。預裂試驗模擬真實梁結構在受到工作應力下,在拉力區產生撓曲裂縫情形;鹽霧加速劣化試驗則模擬外界環境經過多年鹽害後腐蝕發展情況;而抗彎試驗則將經過鹽霧加速劣化之試體加載至極限載重,並觀測多項數據來評估劣化處理後梁試體的力學及韌性行為表現,並於試驗後將裂縫處混凝土取出進行氯離子濃度檢測。
由預裂試驗結果顯示,高強度未添加鋼纖維之梁試體在工作載重下之裂縫寬度遠大於普通強度混凝土試體,而在添加鋼纖維之後,裂縫寬度有明顯改善變小的情況。而在鹽霧加速劣化試驗中腐蝕電流密度的量測初步結果顯示,普通強度混凝土之試體有最高的腐蝕電流密度,其次為高強度未添加鋼纖維之試體,而添加鋼纖維之試體則有最低的腐蝕電流密度。然而由於梁試體之設計是模擬實際結構使用之尺寸,鋼筋號數較大且有符合規範之保護層厚度,因此要使其產生較明顯之腐蝕效果需要較長時間的試驗,因此本研究未進行最後之力學試驗,僅整理出未來力學試驗之評估指標,提供給後續學者繼續完成此實驗,以驗證具工作應力裂縫之高強度鋼纖維鋼筋混凝土之耐久性及腐蝕後力學行為。
As stated in ACI 318-08, the steel fiber is allowed to be used as minimum shear reinforcement in RC structures. However, the climate in Taiwan is toride and humid with high saltinity in the air and the working load usually induce the cracks in the service life of concrete structure. For these reasons, the chloride ion may penetrate into the concrete easier, and therefore reduce the durability of the structures. Further, the steel fibers corrode and weaken the concrete sturctures.
This study investigates the water-cemnt ratio and the addition of the steel fibers which influence the durability of the normal and high strength concrete with working stress cracks. The experiment was divided into three parts, including pre-cracking test, salt spray test, and flexural test. Pre-cracking test is to simulate the formation of flexureal cracks which are caused by working stress. Salt spray test is to simulate the corrosion situation of cracked beam under the salt environment for many years. Flexural test is to evaluate the residual mechanical behaviors and toughness of corroded beam. After these tests, the concrete around the cracks will be removed from beam and starts the chloride penetration test.
According to the results of pre-cracking test, the crack width of the high strength concrete without steel fiber is larger than normal strength concrete. With the addition of the steel fiber, the cracks width reduced apparently. According to the results of salt spray test, the corrosion current denstity (Icorr) of normal strength concrete is the highest. The second highest Icorr is high strength concrete without steel fiber and the lowest Icorr is the concrete with steel fiber. However, the beam specimems was deisgned following the guideline of ACI 318-14; thus, it takes more time for reinforcement to corrod severely. In this study, the flexural test isn’t conducted, but the evalution index used in the flexural test was provided for future study in verifying the durability and residual mechanical behavior of steel fiber high strength concrete with working stress cracks.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖表目錄 xii
圖目錄 xiv
照片目錄 xviii
第一章、緒論 1
1.1 動機與目的 1
1.2 研究內容與方法 2
第二章、文獻回顧 4
2.1 高強度鋼筋混凝土介紹 4
2.1.1 高強度混凝土 4
2.1.2 高強度鋼筋 5
2.2 端鉤型鋼纖維之拉拔行為 6
2.2.1 端鉤型鋼纖維之拉拔機制 6
2.2.2 端鉤型鋼纖維之拉拔能量預測模型 7
2.2.3 等效握裹強度 15
2.3 鋼纖維鋼筋混凝土梁之力學強度 16
2.3.1 設計基本方法 16
2.3.2 鋼纖維鋼筋混凝土梁之撓曲強度 17
2.3.3 鋼纖維鋼筋混凝土梁之剪力強度 18
2.4 各國允許最大裂縫寬度規範 20
2.5 孔隙結構 21
2.5.1 混凝土之孔隙結構 21
2.5.2 鋼纖維與基材之介面微觀結構 22
2.5.3 水灰比與齡期對孔隙結構之影響 23
2.5.4 卜作嵐摻料對孔隙結構之影響 24
2.6 混凝土中之氯離子 25
2.6.1 氯離子之來源與存在形式 25
2.6.2 氯離子之傳輸路徑及其機制 26
2.6.3 粒料及纖維對氯離子傳輸之影響 28
2.6.4 載重裂縫對氯離子傳輸之影響 30
2.7 混凝土中之氯離子擴散行為 34
2.7.1 擴散方程式與擴散係數 35
2.7.2 水灰比對擴散係數之影響 37
2.7.3 水化時間對擴散係數之影響 38
2.7.4 卜作嵐摻料對擴散係數之影響 39
2.7.5 載重裂縫對擴散係數之影響 40
2.8 鋼筋腐蝕 41
2.8.1 鋼筋之腐蝕機制 42
2.8.2 影響混凝土中鋼筋腐蝕之因素 43
2.8.3 腐蝕鋼筋之力學性質 46
2.8.4 混凝土中鋼筋腐蝕之檢測 47
2.8.5 鋼纖維添加對鋼筋腐蝕檢測之影響 52
2.8.6 載重裂縫對鋼筋腐蝕檢測之影響 55
2.8.7 腐蝕型態對鋼筋腐蝕檢測之影響 56
2.8.8 腐蝕電流密度預測模型 57
2.9 鹽霧試驗 62
2.10 大氣腐蝕測試規範 63
2.10.1 ISO、CNS大氣腐蝕環境之分類 63
2.10.2 大氣腐蝕之金屬試片腐蝕速率量測 66
第三章、腐蝕鋼筋混凝土梁殘餘強度實驗統整 69
3.1 預裂方法 69
3.1.1 乾縮裂縫 69
3.1.2 人工裂縫 70
3.1.3 載重預裂 72
3.1.4 各預裂方式比較 73
3.2 加速腐蝕實驗 74
3.2.1 外加電流加速腐蝕 74
3.2.2 浸泡鹽水 79
3.2.3 鹽霧室 80
3.2.4 各加速腐蝕實驗比較 85
3.3 腐蝕後行為評估指標 86
3.3.1 裂縫特徵 86
3.3.2 使用性 86
3.3.3 殘餘強度 88
3.3.4 韌性 91
第四章、實驗計畫 93
4.1 實驗內容 93
4.1.1 實驗背景 93
4.1.2 實驗架構 93
4.2 試驗材料及配比設計 94
4.2.1 試驗材料 94
4.2.2 配比設計 102
4.3 試體設計 103
4.3.1 抗壓圓柱試體 103
4.3.2 抗彎實驗梁試體 103
4.3.3 撓曲強度 103
4.3.4 剪力強度 105
4.4 梁試體製作 106
4.4.1 鋼筋應變計黏貼 106
4.4.2 試體澆置 107
4.5 大氣腐蝕性測定標準試片製作 109
4.6 試驗儀器設備 110
4.7 量測系統 116
4.7.1 內部應變計 116
4.7.2 電阻式變位計(LVDT) 116
4.7.3 裂縫量測 117
4.7.4 影像量測 117
4.8 試驗項目 118
4.8.1 抗壓試驗 118
4.8.2 預裂試驗 119
4.8.3 鹽霧室加速劣化試驗 120
4.8.4 鋼筋腐蝕電流密度量測 120
4.8.5 裂縫量測 121
4.8.6 金屬試片重量損失法 122
4.8.7 抗彎實驗 123
4.8.8 裂縫處氯離子濃度檢測 123
4.8.9 鋼筋重量損失法 127
第五章、初步實驗結果與討論 128
5.1 圓柱抗壓試驗 128
5.2 預裂試驗 131
5.2.1 鋼筋應變計量測 132
5.2.2 工作載重下裂縫特徵 138
5.3 鹽霧室加速劣化試驗 145
5.3.1 鋼筋腐蝕電流密度 146
5.3.2 鋼筋腐蝕重量損失率 148
第六章、未來實驗評估指標 150
6.1 鹽霧室環境腐蝕程度 150
6.2 鋼筋腐蝕量 150
6.2.1 鋼筋腐蝕電流密度預測 150
6.2.2 腐蝕梁試體殘餘強度預測 151
6.2.3 理論與實際鋼筋重量損失關係 151
6.3 梁抗彎試驗 152
6.3.1 裂縫特徵 152
6.3.2 使用性 152
6.3.3 殘餘撓曲強度 153
6.3.4 韌性比 153
6.4 氯離子擴散行為評估 153
6.4.1 開裂處與未開裂處之氯離子濃度 154
6.4.2 開裂處與未開裂處之擴散係數 154
第七章、結論與建議 155
7.1 結論 155
7.2 建議 156
參考文獻 157
附錄A普通強度混凝土梁試體設計圖 171
附錄B 高強度混凝土梁試體設計圖 172
附錄C鹽霧室環境腐蝕程度 173
附錄D 梁試體內拉力筋編號及總重量 174
附錄E 試體鋼筋之理論與實際重量損失表 175
附錄F 試體於使用載重下之裂縫特徵 176
附錄G 試體於使用載重下之中點位移比 177
附錄H 試體於四點抗彎試驗中結果與鋼筋腐蝕狀況 178
附錄I 試體於四點抗彎試驗中各階段之載重及位移 179
附錄J 試體於四點抗彎試驗中韌性指數 180
簡歷 181
[1] A. Djerbi, S. Bonnet, A. Khelidj & V. Baroghel-bouny, “Influence of Traversing Cracks on Chloride Diffusion into Concrete.” Cement and Concrete Research, 38, 877-883, 2008.
[2] AbdelMonem Masmoudi and Jamel Bouaziz, “Durability of Steel Fibres Reinforcement Concrete Beams in Chloride Environment Combined with Inhibitor”, Advances in Materials Science and Engineering Vol.2016, Article ID 1743952, 6 pages.
[3] ACI Committee 318 (2008). “Building Code Requirement for Structural Concrete and Commentary” , American Concrete Institute, Farmington Hills, MI, 465.
[4] Aitcin, P.C., “High Performance Concrete Demystified.” Concrete International, 15(1), 21-26, 1993.
[5] Alonso, C., Andrade C., & Gonzalez J. A., “Relation between Resistivity and Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several Cement Type.” Cement and Concrete Research, 18(5), pp. 687-698, 1988.
[6] Alwan, J. M., Naaman, A. E., and Guerrero, P., “Effect of Mechanical Clamping on the Puul-out Response of Hooked Steel Fibers Embedded in Cementitious Composites,” Concrete Science and Engineering, Vol. 1, No. 1, pp. 15-25, 1999.
[7] Andrade, C., & Martínez, I. “14 - Techniques for Measuring the Corrosion Rate (Polarization Resistance) and The Corrosion Potential of Reinforced Concrete Structures”, In Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, Volume 2, Pages 284-316, Non-Destructive Evaluation of Reinforced Concrete Structures, 2010.
[8] Andres A. T., Sergio N., Jorge T., “Residual Flexure Strength Capacity of Corroded Reinforced Concrete Beams.” Engineering Structures, 29, 1145-1152, 2007.
[9] Aoyama, H., “Development of Advanced Reinforced Concrete Buildings with High-Strength and High-Quality Materials.” Earthquake Engineering Tenth World Conference, Rotterdam, 1992.
[10] ASTM B117-11, “Standard Practice for Operating Salt Spray (Fog) Apparatus”.
[11] ASTM B368 -09(2014), “Standard Test Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS Test).”
[12] ASTM C1202-12, “Standard Test Method for Electrical Indication of Concrete''s Ability to Resist Chloride Ion Penetration.”
[13] ASTM C33-99a, “Standard Specification for Concrete Aggregates.”
[14] ASTM C39/C39M-15a, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.”
[15] ASTM C469/C469M-14, “Standard Test Method for Static Modulus of Elasticity and Poisson''s Ratio of Concrete in Compression.”
[16] ASTM C876-15, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.”
[17] ASTM G50-10(2015), “Standard Practice for Conducting Atmospheric Corrosion Tests on Metals.”
[18] ASTM G85-11, “Standard Practice for Modified Salt Spray (Fog) Testing.”
[19] Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. “Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression.” Journal of Materials in Civil Engineering, 20(3), 255-263, 2008.
[20] Bentur, A., Diamond, S., & Mindess, S. “Cracking Processes in Steel Fiber Reinforced Cement Paste”. Cement and Concrete Research, 15(2), 331-342, 1985.
[21] Bentur, A., Diamond, S., & Mindess, S. “The Microstructure of the Steel Fibre-Cement Interface.” Journal of Materials Science, 20(10), 3610-3620, 1985.
[22] Berrocal, C.G., Lundgren K. & Lofgren I., “Influence of Steel Fibers on Corrosion of Reinforcement in Concrete in Chloride Environments : A Review”, Fibre Concrete, September 12-13, 2013.
[23] Broomfield, J. P., Rodriguez, L.M. Ortega, and A. M. Garcia. “Corrosion Rate and Life Prediction for Reinforced Concrete Structures. Proceedings of Structure Faults and Repairs.” 1993.
[24] Broomfield, J. P. “Corrosion of Steel in Concrete. Understanding Investigation and Repair.” 1997.
[25] C. Andrade, and C. Alonso “Test Method for On-site Corrosion Rate Measurement of Steel Reinforcement in Concrete by Means of the Polarization Resistance Method”, Materials and Structures, Vol.37, November 2004, pp.623-624.
[26] C. Andrade, M.Castellote, C. Alonso and C. Gonzalez “Relation between Colorimetric Chloride Penetration Depth and Charge Passed in Migration Tests of the Type of Standard ASTM C1202-97” Cement and Concrete Research, Vol. 29, pp. 417-421, 1999.
[27] C. G. Berrocal, K. Lundgren, I. Löfgren “Experimental Investigation on Rebar Corrosion in Combination with Fibres”
[28] Cady, P. D., & Weyers, R. E. (1983). Chloride penetration and the deterioration of concrete bridge decks. Cement, concrete and aggregates, 5(2), 81-87.
[29] Chaube, R., Kishi, T. and Maekawa, K. “Modelling of Concrete Performance : Hydration, Microstructure and Mass Transport.” CRC Press, 2005.
[30] Climent, M. A., de Vera, G., López, J. F., Viqueira, E., & Andrade, C. “A Test Method for Measuring Chloride Diffusion Coefficients Through Nonsaturated Concrete: Part I. The Instantaneous Plane Source Diffusion Case.” Cement and concrete Research, 32(7), 1113-1123, 2002.
[31] CNS 1078,「水硬性水泥化學分析法」,中華民國國家標準。
[32] CNS 1240,「混凝土粒料」,中華民國國家標準。
[33] CNS 12874,「環境試驗法(電氣、電子)–鹽霧(循環)試驗」,中華民國國家標準。
[34] CNS 13401,「金屬及合金之腐蝕-大氣腐蝕性之分類」,中華民國國家標準。
[35] CNS 13753,「金屬及合金之腐蝕-大氣腐蝕性(測定標準試片之腐蝕速率以評估腐蝕性)」,中華民國國家標準。
[36] CNS 13754,「金屬及合金之腐蝕-大氣腐蝕性(污染之測定)」,中華民國國家標準。
[37] CNS 14122,「金屬及合金之腐蝕-大氣腐蝕–試片腐蝕生成物清除法」,中華民國國家標準。
[38] CNS 14123,「金屬及合金之腐蝕-大氣腐蝕測試(現場測試之一般要求)」,中華民國國家標準。
[39] CNS 14703,「硬固水泥砂漿及混凝土中水溶性氯離子含量試驗法」,中華民國國家標準。
[40] CNS 14842,「高流動性混凝土坍流度試驗法」,中華民國國家標準。
[41] CNS 15200-7-8,「塗料一般試驗法-第7-8部:塗膜之長期性能-耐循環腐蝕試驗法-鹽水噴霧/乾燥/濕潤」,中華民國國家標準。
[42] CNS 3627,「環境試驗法(電氣、電子)–鹽霧試驗」,中華民國國家標準。
[43] CNS 8886,「鹽水噴霧試驗法」,中華民國國家標準。
[44] Collepardi, M., Marcialis, A., & Turriziani, R. “Penetration of Chloride Ions into Cement Pastes and Concretes.” Journal of the American Ceramic Society, 55(10), 534-535, 1972.
[45] Concrete, C., & Australia, A. “Chloride Resistance of Concrete Report” , June, 2009.
[46] Dhir, R. K., El-Mohr, M. A. K., & Dyer, T. D. “Chloride Binding in GGBS Concrete” Cement and Concrete Research, 26(12), 1767-1773, 1996.
[47] Duracrete “Probabilistic Performance Based Durability Design : Modelling of Degradation.” Document, D. P. BE95-1374/R4-5. The Netherlands.
[48] E. Meck, V. Sirivivatnanon “Field Indicator of Chloride Penetration Depth” Cement and Concrete Research, Vol. 33,pp. 1113-1117, 2003.
[49] Enevoldsen, J. N., Hansson, C. M., & Hope, B. B. (1994). Binding of chloride in mortar containing admixed or penetrated chlorides. Cement and Concrete Research, 24(8), 1525-1533.
[50] Fanella, David A., and Naaman, Antoine E., “Stress-Strain Properties of Fiber Reinforced Mortar in Compression,” J. Am. Concr. Inst., 82(4), 475-483, 1985.
[51] Feng, Q. “High-Performance Concrete”. Building Industry Press. Beijing, 1996.
[52] Fraczek, J. “Review of Electrochemical Principles as Applied to Corrosion of Steel in a Concrete or Grout Environment.” Special Publication,102, 13-24, 1987.
[53] Hirozo, M., Shaikh F.U.A. & Ayuko K., “Corrosion of Reinforcing Steel in Fiber Reinforced Cementitious Composites”, Journal of Advanced Concrete Technology, Vol.9, No.2, 159-167, June, 2011.
[54] Hooton, R. D., & McGrath, P. F. (1995). Issues related to recent developments in service life specifications for concrete structures. Chloride Penetration into Concrete. RILEM, L.O. Nilsson and J.P. Olivier, Eds., pp. 388-397.
[55] Hussain, S. E., & Al-Saadoun, S. S. “Effect of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete.” Cement and Concrete Research, 21(5), 777-794, 1991.
[56] Hussain, S. E. “Corrosion Resistance Performance of Fly Ash Blended Cement Concrete.” Materials Journal, 91(3), 264-272, 1994.
[57] Hsu, L. S., and Hsu, C. T., “Stress-Strain Behavior of Steel-Fiber High-Strength Concrete under Compression,” ACI Structural Journal, July-August, 1985.
[58] Ippei, M., Kazuyuki T., “Distribution of Chloride Ion in Cracked Reinforced Concrete Prism Transported by Cyclic Rain with Chloride Ion.”, Seminar on Durability and Life Cycle Evaluation of Concrete Structure, 2006.
[59] IS/IEC 60371-2 :2004 “Specification for Insulting Materials Based on Mica Part II Methods of Test.” May, 2012.
[60] ISO 9223 “Corrosion of Metals and Alloys - Corrosivity of Atmosphere - Classification, Determination and Estimation.” 1992.
[61] ISO 9224 “Corrosion of Metals and Alloys – Corrosibity of Atmoshpere – Giuding Values for the Corrosivity Categories.” 1992.
[62] ISO 9225 “Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Measurement of Pollution.” 1992.
[63] ISO 9226 “Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity.” 1992.
[64] J. A. Gonzalez, C. Andrade, C. Alonson and S. Feliu “Comparison of Rates of General Corrosion and Maximum Pitting Penetration on Concrete Embedded Steel Reinforcement.” Cement & Concrete Research, Vol. 25, No.2, pp.257-264, 1995.
[65] J. G. Cabrera “Deterioration of Concrete Due to Reinforcement Steel Corrosion.” Cement & Concrete Composites, 18, 47-59, 1996.
[66] Junjie, W. et al., “Influence of Micro and Marco Cracks Due to Sustained Loading on Chloride-Induced Corrosion of Reinforced Concrete Beams”, 4th International Conference on the Durability of Concrete Structures, 24-26, July, 2014.
[67] Katrien, A., Geert DE S., Liviu M., Veerle B., “Influence of Cracks and Crack Width on Penetration Depth of Chlorides in Concrete.”, European Journal of Environmental and Civil Engineering, 13(5):561-572, May, 2009.
[68] Katwan, M. J., Hodgkiess, T. & Arthur, P. D. “Electrochemical Noise Technique for the Prediction of Corrosion Rate of Steel in Concrete.” Materials and Structures, 29(5), pp.286-294, 1996.
[69] Kim, D.J., El-Tawail, S., and Naaman, A. E., “Correlation between Single Fiber Pullout and Tensile Response of FRC Composites with High Strength Steel Fibers. In : Reinhardt, H. W. and Naaman, A.” Fifth International RILEM Workshop on High Performance Fiber-Reinforced Cement Composites: HPFRCC5. Rilem Proceedings pro053, pp.67-76.
[70] K. Y. Ann, H. W. Song, “Chloride Threshold Level for Corrosion of Steel in Concrete.” Corrosion Science Vol. 49, pp. 4113-4133, 2007.
[71] Leema Rosa A., Revathi J., Sugna K., Ragunath P.N., “Ductility Performance of Corrosion-Damaged Reinforced Concrete Beams.” JCSE, Vol. 6, November, 2009.
[72] Leng, F., Feng, N., & Lu, X. “An Experimental Study on The Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete” Cement and Concrete Research, 30(6), 989-992, 2000.
[73] Li, V. C., Wang, Y., and Backer, S., “Effect of Inclining Angle, Bundling and Surface Treatment on Synthetic Fiber Pull-out from A Cement Matrix.” Journal of Composites, 48 Vol. 21, No2, pp.132-140,1990.
[74] Liu, Y. & Weyers, R. E. “Modelling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures.” ACI Materials Journal, 95(6), pp. 675-681, 1998.
[75] Luo, R., Cai, Y., Wang, C., & Huang, X. “Study of Chloride Binding and Diffusion in GGBS Concrete.” Cement and Concrete Research, 33(1), 1-7, 2003.
[76] M. Ismail, A. Toumi, R. François, R. Gagné, “Effect of Crack Opening on the Local Diffusion of Chloride in Cracked Mortar Samples”, Cement and Concrete Research, 38, 1106–1111, 2008.
[77] Matinez, I. & Andrade, C. “Examples of Reinforcement Corrosion Monitoring by Embedded Sensors in Concrete Structures.” Cement & Concrete Composites, Vol. 33, pp545-554, 2009.
[78] Mehta, P. K., “Concrete Structure, Properties and Materials.” Englewood Hills, NJ: Prentice-Hall, 1986.
[79] Mehta, P. K., “Concrete : Microstructure, Properties and Materials.” Prentice-Hall, 1993.
[80] Michael J. C. et. al., “Durability of Concrete Beams Externally Reinforced with Composite Fabrics”. Construction and Building Materials. Vol.9., No.3, pp. 141-148, 1995.
[81] Mike, O., Hans B., & Mark A., “Prediction of Corrosion Rates in RC Structures – A
Critical Review”, Modelling of Corroding Concrete Structures, RILEM Book series 5, DOI 10.1007/978-94-007-0677-4_2, 2011.
[82] Mindess, S., and Young, J. F., ”Concrete.” Prentice Hall, 1981.
[83] Mohammed, T. U., Yamaji, T., & Hamada, H. “Chloride Diffusion, Microstructure, and Mineralogy of Concrete after 15 Years of Exposure in Tidal Environment.” ACI Materials Journal, 99(3), 256-263, 2002.
[84] Mendis, P. A. and Panagopoulos, C. “Applications of High Strength Concrete in Seismic Regions.” 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January, 2000.
[85] Michihiko, Abe and Hitoshi, Shiohara, “ New RC Materials.” In Aoyama, H. “Design of Modern Highrise Reinforced Concrete Structures”, Vol.3, World Scientific, 2001.
[86] N. Otsuki, S. Nagataki, K. Nakashita, “ Evaluation of AgNO3 Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials” ACI Materials Journal, pp. 587-592, 1992.
[87] Naaman, A. E., & Reinhardt, H. W., “High Performance Fiber Reinforced Cement Composites.” High Performance Construction Materials. Sci Appl, 91-153, 2008.
[88] Ngala, V. T., Page, C. L., Parrott, L., & Yu, S. W. “Diffusion in Cementitious Materials: II, Further Investigations of Chloride and Oxygen Diffusion in Well-Cured OPC and OPC/30% PFA Pastes.” Cement and Concrete Research, 25(4), 819-826, 1995.
[89] Oluokun, F. A., “Prediction of Concrete Tensile Strength from Its Compressive Strength : Evaluation of Existing Relations for Normal Weight Concrete.” ACI Mechanicals Journal, Vol.88, No.3, pp.302-309, 1991.
[90] Otsuka, K., Mihashi, H.,Kiyota, M., Mori, S., & Kawamata, A. “Observation of Multiple Cracking in Hybrid FRCC at Micro and Meso Levels.” Journal of Advanced Concrete Technology, 1(3), 291-298.
[91] Page, C. L. & Lambert, P. “Analytical and Electrochemical Investigations of Reinforcement Corrosion.” Contractor Report 30, Transport and Road Research Laboratory(TRRL), Crowthorne, 1986.
[92] Polder, R. B. “Test Methods for on Site Measurement of Resistivity of Concrete—a RILEM TC-154 Technical Recommendation.” Construction and building materials, 15(2), 125-131, 2001.
[93] Quanbing, W. X. X. L. Y., & Shiyuan, H. “The Diffusion Equation of Cl Ion in Cement Mortar.” Journal of building materials, 4, 004, 1991.
[94] Rodriguez, J., Ortega, L.M., Garcia, A.M., “Corrosion Rate Measurements in Concrete Bridges by Means of the Linear Polarization Technique Implemented in a Field Device.” ACI Fall Convention, Minneapolis, Minnesota, November, 1993.
[95] Schiessl, P, “Corrosion of Steel in Concrete, RILEM Report.” Report of the Technical Committee 60-CSC, London, Chapman & Hall, 1988.
[96] Scott, A. N. & Alexander, M. G. “The Influence of Binder Type, Cracking and Cover on Corrosion Rates of Steel in Chloride-Contaminated Concrete” Magazine of Concrete Research, 59(7), pp. 495-505, 2007.
[97] Shah, S. P. “High Performance Concrete: Past, Present and Future. High Performance Concrete-Worka-bility, Strength and Durability.” Hong Kong: Hong Kong University of Science and Technology, 3-29, 2000.
[98] Sidney, M., & Francis, Y. J. “Concrete.” Prentice-Hall, N. J., 1981.
[99] SINTEF Building and Infrastructure “Modelling of Reinforcement Corrosion in Concrete – State of the Art”, COIN Project Report, 7-2008.
[100] Song, P. S., and Hwang, S., “Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete.” Construction and Building Materials, Vol. 18, pp.669-673, 2004.
[101] Stern, M., & Geary, A. L. “Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves.” Journal of the electrochemical society, 104(1), 56-63, 1957.
[102] Thomas, M. D., & Bamforth, P. B.” Modelling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag.” Cement and Concrete Research, 29(4), 487-495, 1999.
[103] Uhlig, H. H., & Revie R. W., “Corrosion and Corrosion Control.” 3rd edition, Wiley Interscience, N.Y., pp. 28-35, 1985.
[104] Vu, K. & Stewart, M. G. “Structural Reliability of Concrete Bridges Including Improved Chloride-Induced Corrosion Models.” Structural Safety, 22(4), pp. 313-333, 2000.
[105] Vu, K., Stewart, M. G. & Mullard, J. “Corrosion-Induced Cracking : Experimental Data and Predictive Models” ACI Structural Journal, 102(5), pp. 719-726, 2000.
[106] William, D. Callister. “Fundamentals of Materials Science and Engineering”, 2001.
[107] Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A., & Garboczi, E. J. “Percolation and pore structure in mortars and concrete.” Cement and concrete research, 24(1), 25-37, 1994.
[108] Xu, B., Ju, J. W., and Shi, H. S., “Progressive Micromechanical Modeling for Pullout Energy of Hooked-end Steel Fiber in Cement-based Composites,” SAGE. International Journal of Damage Mechanics, 2011.
[109] Yalcyn, H. & Ergun, M. “The Prediction of Corrosion Rates of Reinforcing Steels in Concrete.” Cement and Concrete Research, 26(10), pp.1593-1599.
[110] Yan X. K. et al. “Ductility Analysis of Reinforced Concrete Beam Base on Salt Spray Corrosion Test” Corrosion and Protection, Vol 33. No.7, July, 2012.
[111] Young, J. F., “Review of the Pore Structure of Cement Paste and Concrete and Its Influence on Permeability.” Special Publication, 108, 1-18, 1988.
[112] 土木406-100,「鋼筋混凝土學」,中國土木水利工程學會,2011。
[113] 王鼎智,「氯離子在不同混凝土裂縫型式下之傳輸與對鋼筋腐蝕影響之研究」,碩士論文,國立成功大學土木工程研究所,2002。
[114] 王駿紳,「快速評估貯鹽浸漬試驗之水泥砂漿氯離子擴散行為」,碩士論文,國立臺灣海洋大學材料工程研究所,2012。
[115] 台灣腐蝕分類資訊系統-板狀試片腐蝕速率與腐蝕環境分類,港灣技術研究中心,2009。
[116] 何郁姍,「藉由貯鹽試驗及鹽霧加速劣化試驗探討高強度混凝土添加鋼纖維之耐久性」,碩士論文,國立臺灣大學土木工程學研究所,2016。
[117] 李俊鋼,「添加鋼纖維對鋼筋腐蝕量測訊號影響之探討」,碩士論文,國立臺灣海洋大學河海工程學系,2008。
[118] 李旺達,「探討比色法中顏色變化界面之氯離子濃度對混凝土非穩態氯離子傳輸係數之影響」,碩士論文,國立臺灣海洋大學材料工程研究所,2006。
[119] 卓奕杉,「RC梁鋼筋腐蝕之剪力行為評估與縱向鋼筋腐蝕之耐震行為」,碩士論文,國立台灣科技大學營建工程學系,2012。
[120] 吳勇福,「無腹筋高強度鋼纖維鋼筋混凝土梁撓曲與剪力強度之評估」,碩士論文,國立臺灣大學土木工程學研究所,2014。
[121] 吳建國、黃然、梁明德等,「混凝土橋梁鹽分腐蝕問題之研究」,交通台灣區國道新建工程局,1993。
[122] 林致緯,「以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,碩士學位論文,國立臺灣海洋大學材料工程研究所,2006。
[123] 林維明,「鋼筋混凝土腐蝕要因及對策之探討」,港灣技術研究所,1998。
[124] 林永芳,「添加矽灰及鋼纖維對混凝土氯離子滲透與腐蝕行為之探討」,碩士論文,國立臺灣海洋大學河海工程學系,基隆,2007。
[125] 林安理,「中剪跨鋼纖維混凝土梁剪力強度預測研究」,碩士論文,國立臺灣大學土木工程學研究所,2013。
[126] 官家緯,「粗粒料用量對混凝土傳輸行為之影響」,碩士論文,國立臺灣海洋大學材料工程研究所,2011。
[127] 柯賢文,「腐蝕及其防治」,全華科技圖書有限公司,1985。
[128] 洪定海,「混凝土中鋼筋的腐蝕與保護」,中國鐵道出版社,1988。
[129] 郭耀仁,「高強度鋼纖維混凝土的力學性質與圍束效應之研究」,碩士論文,國立台灣大學土木研究所,2012。
[130] 陳立軍, 孔令煒, 王德君, 丁銳, & 梁銳,「混凝土滲透性概念的細化及其測試方法」 混凝土,(1),40-42,2009.。
[131] 張廷峻,「探討鹽霧試驗與貯鹽試驗對混凝土耐久性之關聯」,碩士學位論文,國立臺灣海洋大學材料所,2013。
[132] 張雲蓮、史美倫、陳志源,「鋼纖維砂漿的電化學振蕩現象」,建築材料學報,Vol. 8 , No. 5,2005。
[133] 梁智信,「濱海地區混凝土中氯離子擴散行為之研究」,博士論文,國立臺灣海洋大學材料工程研究所,2013。
[134] 野口貴文、金螢來、長井宏憲,「腐食型態を考慮した腐食鉄筋の力学的性能の評價に関する研究」,日本建築學會構造系論文及,第73卷,第624號,181-188,2008。
[135] 葉祥海、黃然、張建智,「既有RC建築物劣化及其修復之研究」,內政部建築研究所研究報告,2006。
[136] 楊仲家、卓世偉,「混凝土耐久性試驗研究」,內政部建築研究所,2004。
[137] 詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程學系,1986。
[138] 劉秉京,「混凝土結構耐久性設計」,人民交通出版社,2007。
[139] 劉彥志,「飛灰混凝土傳輸行為之研究」,碩士論文,國立臺灣海洋大學材料工程研究所,2011。
[140] 趙彥迪、F. H. Wittmann、趙鐵軍,「靜水壓力下混凝土中氯離子傳輸機理研究」,碩士論文,青島理工大學土木工程學院,2011。
[141] 趙國藩、彭少民、黃承達,「鋼纖維混凝土結構」,中國建築工業出版社,北京,1999。
[142] 蔡立倫,「含腐蝕鋼筋之鋼筋混凝土梁耐震行為」,碩士論文,國立台灣科技大學營建工程學系,2010。
[143] 蔡得時,「利用氯化物之滲透評估混凝土在海洋環境之品質及保護層之厚度」,防蝕工程,6(2),47-56,1992。
[144] 鍾惠玲,「不同劣化環境對結構用鋼腐蝕行為影響之研究」,碩士論文,中華技術學院土木防災工程研究所,2007。
[145] 戴群軒,「混凝土內鋼筋腐蝕與氯離子濃度之研究」,碩士論文,臺灣大學土木工程學研究所,2012。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊