(44.192.10.166) 您好!臺灣時間:2021/03/06 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮興
研究生(外文):Jung-Hsing Chen
論文名稱:營建工程考量風不確定因素影響下之工期預測研究-以風力發電機組興建工程為例
論文名稱(外文):Duration Forecast for Construction Engineering Subject to the Impact of Wind Uncertainty: An Study of Wind Turbine Construction Project
指導教授:郭斯傑教授
口試委員:曾惠斌教授陳柏翰教授鄭明淵教授王維志教授
口試日期:2017-06-16
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:營建工程風不確定因素工期預測風力發電機組模擬模糊
外文關鍵詞:Duration ForecastImpact of Wind UncertaintyWind Turbine ConstructionSimulationFuzzy Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區天然資源蘊藏不豐,自產能源匱乏,98%以上的能源供給仰賴進口,化石能源進口依存度高,為減少對能源進口的依賴度及全球溫室氣體減量的壓力下,並為打造非核家園之目標邁進,我國政府全力積極推動各類再生能源計畫,例如「千架海陸風力機」計畫與「陽光屋頂百萬座」計畫。由於台灣位處大陸板塊與海洋交界處,每年因受到強勁的東北季風吹襲,使得台灣本島沿岸暨許多離島地區,年平均風速超過每秒4公尺以上,風能蘊藏相當豐富;且風力發電具備低環境污染、低發電成本及永續發展之優點,為具潛力的再生能源之一,故風力發電機組興建工程將在台灣積極開發推動建置。
為確保風力發電機組興建工程能在規劃期程內完成並開始啟用供電,在台灣,目前大多數的風力發電機組興建工程合約大都採用日曆天計算工期。惟規劃這些日曆天時並未仔細考量風不確定因素影響所產生之風險,目前工程界實務上對於受天候影響之工期預估大多是根據經驗法則以概估方式處理,惟此概估方式常因人而異,若風不確定性因素之影響超乎預期,則工期延誤之風險相應而增加。因此,承包商需承受更多的風險。好的專案管理(project management)係要減少不確定因素所造成之不良影響,而使專案時程能依循所規畫之排程進行;同時,亦能動態地調整所規畫之排程俾利符合專案實際執行情況。因此,如何準備一個受到風的負面衝擊之風險最小的規畫排程實為一風力發電機組興建工程中重要的課題。
然而傳統的排程方法,如要徑法,並未將風的衝擊納入排程考量;實務上,此等風的衝擊常常仰賴工程師的工程經驗或專家的主觀判斷推測後,據以概估地增加一段緩衝期程來因應風不確定性因素之影響。然而,該等緩衝期程常因人而異,且不足夠的緩衝期程亦會導致工期延誤,進而產生履約爭議及對社會大眾造成不便。在營建管理相關領域中,如排程規畫或生產力預估等研究,模擬(simulation)是一個用來處理不確定因素之有效方法。因此,若能根據歷史風速資料,在規劃或設計階段對許多不同假設情境進行模擬,應能較可靠地、合理地評估風的衝擊,俾利減少風力發電機組興建工程的工期延誤風險。
本研究蒐集風力發電機組興建工程工址鄰近區域之中央氣象局歷史風速資料,藉由分析各級風對各受風敏感之作業項目的直接生產力影響,結合經模糊隸屬函數量化處理之專家經驗,建立一風力發電機組興建工程受風影響之工期估算模式,再結合導入所蒐集之歷史風速資料,發展一電腦排程模擬系統,並以台灣電力公司主政之「桃園蘆竹風力發電機組興建工程」為例,測試此工期估算模式與電腦排程模擬系統之成效,期能提供排程人員更具科學性、系統性與可靠性之預測工期與排程參考。本研究契合我國近年推動風力發電之方針,並填補風力發電機組興建工程難以評估工期受風影響程度之缺憾,亦可提升風力發電機組興建工程之風險認知。藉由參酌本研究擬訂合理、可靠之工期,進而順利推展工進俾利減少延誤及糾紛發生,對於我國未來開發大量風力發電機組興建工程之營建管理,實屬有價值之貢獻。
Due to many concerns of global climate changing, many countries are making efforts for reducing carbon emission and increasing green energy in order to develop a low carbon and sustainable society. Because of its characteristics of cleanness, inexhaustibility, low pollution and low cost, wind energy becomes one of the most promising renewable energy sources as an alternative to conventional fossil, coal, or nuclear sources of energy. Therefore, many countries are increasingly devoted to establish wind farms with multi-megawatt sized wind turbines for sustainable green energy developments. Ritter et al. (2015) noted that the global cumulative installed capacity of wind energy increased from 6 GW in 1996 to 318 GW in 2013 and is expected to reach 596 GW in 2018. Thus, it is foreseeable that a large number of wind turbine construction projects will be carried out worldwide in the near future.
Taiwan has few indigenous energy resources. More than 98% of energy resource is imported from overseas, mainly conventional fossil, coal, or nuclear sources of energy. How to develop self-produced energy instead of depending on the importation to ensure steady supply is one of the major concerns for future energy development in Taiwan. With abundant wind energy potential existed, Taiwan’s government has been actively promoting installation of wind farms for the reduction of carbon emissions and the development of sustainable energy.
Wind turbines mainly capture wind energy to produce electricity; therefore, the sites selected for constructing wind farm, particularly onshore or offshore, are definitely with plentiful of strong wind. However, strong wind could lead to significant productivity loss of some wind-sensitive tasks resulting in adversely affecting the scheduling of wind turbine construction and causing delay. Consequently, the wind, simultaneously playing both positive and negative roles in the wind farm construction project, makes schedule control a challenging job. Accordingly, wind is a significant weather risk for productivity loss and schedule delay in wind turbine construction projects.
In Taiwan, most wind turbine construction projects are now awarded on a calendar-day basis, in which the contract period has been specified without considering the wind impact in each calendar day. As results, the contractors will take more schedule risks than ever before. Unfortunately, conventional scheduling techniques (e.g., critical path method) are not able to catch the impact of wind uncertainties. In practice, the impact of wind uncertainties is usually estimated by a rule of thumb based on engineers’ past experiences and experts’ subjective judgements and is roughly adjusted by adding an estimated amount of time. However, different experiences and judgements from various professionals will result in different adjustments. Also, inappropriately adjustment could not keep the project on the track of the stipulated schedule plan, which results in raising serious events of disputes or penalty between the contractor and the owner. Simulation is an effective approach to handle the uncertainties involved in various aspects of construction management, such as scheduling and productivity estimation. Therefore, scientifically simulating various scenarios based on historical wind speed data in plan/design phase would more accurately evaluate the impact of wind uncertainties to minimize the duration risks of wind turbine construction project.
With the assistance of professional expertise, the incorporation of fuzzy-set approach, as well as the utilization of historical wind speed data, this research presents a duration estimation model for wind turbine construction project subject to the impact of wind uncertainties,. An appropriate duration for each wind-sensitive task based on no-wind condition can be assigned based on a rule of thumb; afterwards, the simulated duration subject to the impact of wind uncertainties can be derived by the proposed model. An application example using this model to estimate the duration of wind-sensitive tasks is presented using actual wind speed data from Taiwan. This model is easier to follow and simpler to apply. By employing this approach, the duration can be more accurately estimated even though without much relevant working experience provided.
目 錄
口試委員審定書 I
誌 謝 II
研究摘要 IV
ABSTRACT VI
目 錄 IX
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍與限制 4
1.4 研究方法及流程 5
第二章 文獻回顧 7
2.1 全球風力發電產業發展現況及趨勢 7
2.2 國內風力發電產業發展現況及趨勢 12
2.3 風的分級與風速的轉換 15
2.4 模糊理論及隸屬函數 19
2.5 模糊理論於排程之應用 23
第三章 分析模式及計算依據 25
3.1 判別受風敏感之作業項目 25
3.2 各作業項目受不同風力影響之生產力折減參數 26
3.3 隸屬函數 33
3.4 生產力損失 36
3.5 計算準則 37
3.6 排程模擬系統 40
第四章 案例研析 45
4.1 案例基本資料 45
4.2 氣象站基本資料 56
4.3 模擬結果 57
4.4 模擬結果研析 63
第五章 結論與建議 69
5.1 結論 69
5.2 研究貢獻 70
5.3 建議 72
參考文獻 73
附 錄 79
參考文獻
一、英文部分
1.Apipattanavis, S., Sabol, K., Molenaar, K.R., Rajagopalan, B., Xi, Y., Blackard, B., and Patil, S., “Integrated framework for quantifying and predicting weather-related highway construction delays,” Journal of Construction Engineering and Management, ASCE, Vol. 136, No. 11, pp. 1160-1168 (2010).
2.Ayyub, B.M., and Halder, A., “Project scheduling using fuzzy set concepts,” Journal of Construction Engineering and Management, ASCE, Vol. 110, No. 2, pp. 189-204 (1984).
3.Bataineh, K. M., and Dalalah, D., “Assessment of wind energy potential for selected areas in Jordan,” Renewable Energy, Vol. 59, pp. 75-81 (2013).
4.Borowy, B.S., and Salameh, Z.M., “Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system,” IEEE Transactions on Energy Conversion, Vol. 11, No. 2, pp. 367-375 (1996).
5.Bhandari, B., Lee, K.T., Lee, G.Y., Cho, Y.M., and Ahn, S.H., “Optimization of hybrid renewable energy power system: A review,” International Journal of Precision Engineering and Manufacturing Green Technology, Vol. 2, No. 1, pp. 99-112 (2015).
6.Carr, R.I. “Simulation of construction project duration,” Journal of Construction Division, ASCE, Vol. 105, No. 2, pp. 117-128 (1979)
7.Chang, C.T., and Lee, H.C., “Taiwan’s renewable energy strategy and energy-intensive industrial policy,” Renewable and Sustainable Energy Reviews, Vol. 64, pp. 456-465 (2016)
8.Chao, L.C., and Hsiao C.S., “Fuzzy model for predicting project performance based on procurement experiences,” Automation in Construction, Vol. 28, pp. 71-81 (2012).
9.El-Rayes, K., and Moselhi, O., “Impact of rainfall on the productivity of highway construction,” Journal of Construction Engineering and Management, ASCE, Vol. 127, No. 2, pp. 125-131 (2001).
10.Guo, S.J., “Computer-aided project duration forecasting subjected to the impact of rain,” Journal of Computer-Aided Civil and Infrastructure Engineering, Vol.15, No. 1, pp. 67-74 (2000).
11.Gupta, R.A., Kumar, R., and Bansal, A.K., “BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting,” Renewable and Sustainable Energy Reviews, Vol. 41, pp. 1366-1375 (2015).
12.Jeong, H.S., Atreya, S., Oberlender, G.D., and Chung, B.Y., “Automated contract time determination system for highway projects,” Automation in Construction, Vol. 18, No. 7, pp. 957-965 (2009).
13.Justus, C.G., and Mikhail, A., “Height variation of wind speed and wind distributions statistics,” Geophysical Research Letters, Vol. 3, No. 5, pp. 261-264 (1976).
14.Katinas, V., Sankauskas, D., Markevicius, A., and Perednis, E., “Investigation of the wind energy characteristics and power generation in Lithuania,” Renewable Energy, Vol. 66, pp. 299-304 (2014).
15.Khamooshi, H., and Golafshani, H., “EDM: Earned duration management, a new approach to schedule performance management and measurement,” International Journal of Project Management, Vol. 32, No. 6, pp. 1019-1041 (2014).
16.Koehn, E., and Brown, G., “Climatic effects on construction,” Journal of Construction Engineering and Management, ASCE, Vol. 111, No. 2, pp. 129-137 (1985).
17.Korman, R., Setzer, S.W., and Powers, M.B., “Rains wreck summer schedules,” Engineering News Record, McGraw-Hill Construction Weekly, August 31 (1992), 6-7.
18.Lorterapong, P., and Moselhi, O., “Project-network analysis using fuzzy sets theory,” Journal of Construction Engineering and Management, ASCE, Vol. 122, No. 4, pp. 308-318 (1996).
19.Mendel, J.M., “Fuzzy logic systems for engineering: a tutorial,” Proceedings of the IEEE, Vol. 83, No. 3, pp.345-377 (1995).
20.Mirahadi, F., and Zayed, T., “Simulation-based construction productivity forecast using neural-network-driven fuzzy reasoning,” Automation in Construction, Vol. 65, pp.102-115 (2016).
21.Moder, J.J., Phillips, C.R., Davis, E.W., “Project management with CPM, PERT and Precedence Diagramming,” Van Norstrand Reinhold, New York, pp. 270-311 (1983)
22.Mohandes, M., Rehman, S., and Rahman, S.M., “Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS),” Applied Energy, Vol. 88, No. 11, pp. 4024-4032 (2011).
23.Moselhi, O., Gong, D., and El-Rayes, K., “Estimating weather impact on the duration of construction activities,” Canadian Journal of Civil Engineering, Vol. 24, No. 3, pp. 359-366 (1997).
24.Padilla, E.M., and Carr, R.I., “Resource strategies for dynamic project management,” Journal of Construction Engineering and Management, ASCE, Vol.117, No. 2, pp. 279-293 (1991).
25.Pan, N.F., “Assessment of productivity and duration of highway construction activities subject to impact of rain,” Expert Systems with Applications, Vol. 28, No. 2, pp. 313-326 (2005).
26.Quan, P., and Leephakpreeda, T., “Assessment of wind energy potential for selecting wind turbine: An application to Thailand,” Sustainable Energy Technologies and Assessments, Vol. 11, pp.17-26 (2015).
27.Ritter, M., Shen, Z., Cabrera, B.L., and Odening, M., “Designing an index for assessing wind energy potential,” Renewable Energy, Vol. 83, pp. 416-424 (2015).
28.Salameh, Z.M., and Safari, I., “Optimum windmill-site matching,” IEEE Transactions on Energy Conversion, Vol. 7, No. 4, pp. 669-676 (1992).
29.Smith, G.R., and Hancher, D.E., “Estimating precipitation impacts for scheduling,” Journal of Construction Engineering and Management, ASCE, Vol. 115, No. 4, pp. 552-566 (1989).
30.Thomas, H.R., and Yiakoumis, I., “Factor model of construction productivity,” Journal of Construction Engineering and Management, ASCE, Vol. 113, No. 4, pp. 623-639 (1987).
31.Touran, A., and Wiser, E.P., “Monte Carlo technique with correlated random variables,” Journal of Construction Engineering and Management, ASCE, Vol. 118, No. 2, pp.258-272 (1992)
32.Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, No. 3, pp. 338-353 (1965).
33.“Global Wind Report 2015 – annual market update GWEC
34.“Manual on Marine Meteorological Services - Volume 1: Global Aspects,” 2012 edition, World Meteorological Organization 2012, (WMO –No. 558),
二、中文部分
35.丘佳欣,「陸上風力發電組工程受風影響下之工期規劃」,碩士論文,國立台灣大學土木工程研究所,台北(2014)
36.張永源,「台灣風力發電之現況與展望」,環保資訊月刊,第182期,(2013).
37.連日新,「季風對風力發電組工程進度之影響-以澎湖風場為例」,碩士論文,國立台灣大學土木工程研究所,台北(2011)
38.楊敏生,「模糊理論簡介」,數學傳播,十八卷一期,頁7-11,83年3月
39.經濟部能源局,「能源產業技術白皮書」,台北(2016)
40.經濟部,「能源發展綱領」,中華民國106年4月
41.「再生能源發展條例」,中華民國98年7月8日華總一義字第098001664471號。
42.工研院能資所、中央大學大氣物理所,「台灣地區基本風能分布」,2000
43.台灣電力股份有限公司,「蘆竹風力發電機組新建工程工程採購承攬契約」,2013
三、網站
44.「行政院」網站,http://www.ey.gov.tw
45.「經濟部能源局」網站,http://www.moeaboe.gov.tw
46.「中華民國經濟部」網站,http://www.moea.gov.tw/
47.「維基百科」網站,http://zh.wikipedia.org/zh-tw
48.「再生能源網」,http://re.org.tw
49.中央大學台灣風能網頁,http://www.atm.ncu.edu.tw/93/wind
50.中央氣象局全球資訊網頁,http://www.cwb.gov.tw/
51.Danish Wind Industry Association,http://www.windpower.org/
52.American Wind Energy Association,http://www.awea.org/
53.European Wind Energy Association,http://www.ewea.org/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔