(54.227.48.147) 您好!臺灣時間:2018/02/18 16:25          離開系統
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
研究生:高宇
研究生(外文):Yu Kao
論文名稱:模型試驗探討地工合成材加勁壁壘結合格子壩於土石流防治之研究
論文名稱(外文):Model Test on Geosynthetic-Reinforced Barrier with Grid Dam for Debris Flow Control
指導教授:陳榮河
指導教授(外文):Rong-Her Chen
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:105
中文關鍵詞:地工合成材壁壘土石流模型試驗格子壩
外文關鍵詞:Geosyntheticsbarrierdebris flowmodel testgrid dam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用室內砂箱模型試驗模擬土石流衝擊地工合成材加勁壁壘(Geosynthetic-Reinforced Barrier)以及加勁壁壘結合格子壩之兩種情況。研究係透過質點影像速度法(Particle Image Velocimetry, PIV)分析土石流之前端速度,及質點追蹤速度法(Particle Tracking Velocimetry, PTV)分析土石流之平均速度,並藉由兩種速度分析法觀察土顆粒在流動至撞擊過程的位移。同時,藉由荷重計量測背填土所受的衝擊力,探討灌漿面板及加勁材降低衝擊力的效果。
研究結果發現,灌漿面板式加勁壁壘受土石流衝擊後,背填土之受力均很小(最大值僅0.6 N),而磨損與變形亦小。基礎附近覆土之淘刷與堆積深度分別為2.18 cm、5.22 cm。而利用PIV測得土石流前端速度介於2.43-3.16 m/s,PTV得到平均表面流速為2.01-3.12 m/s;以前端速度略大於平均流速。此兩者透過因次分析轉換成現地流速符合一般之土石流流速。
另一方面,增設格子壩時,粗、細顆粒分離及土、水分離效果均提高,被攔阻在壩上游處之堆積量由5.0%增至47.2%,而堆積坡度則減緩至約5°,此將降低後續土石流之衝擊力。壩下游處淘刷量也因增設格子壩減少30.7%,可以保護基礎。然有效之土水分離也使得通過格子壩後之流速增加、堆積量減少,須加注意。
此外,將前人所作回包式與黏接式加勁壁壘與本研究灌漿式面板之加勁壁壘進行比較,發現在變形與磨損部分,以剛性之灌漿面板表現良好;在抵抗基礎淘刷及堆積方面,以回包式柔性的結構為佳。因此建議針對壁壘不同的位置可考慮採用不同型式,以達對抗土石流衝擊之最佳效果。
A small-scale model test was conducted to simulate debris flow impacting a geosynthetic-reinforced barrier with a grouted facing-panel, as well as the barrier constructed with a grid dam. The analyses of the front velocity of the flow and its average velocity were performed by particle image velocimetry (PIV) and particle tracking velocimetry (PTV). The movement of the particles was the obtained through the analysis of these velocities. Impact force behind the panel (in the backfill) was measured by load cells to explore the effect of the panel and the reinforcement in reducing the impact force from the flow.
From the test results, it was found that the impact force behind the panel was generally small (the maximum value was only 0.6 N), and the abrasion and deformation of the panel were slightly. The final scouring and deposition depths were 2.18 cm and 5.22 cm, respectively. The average velocity of the debris flow was 2.01-3.12 m/s, which was slightly less than the front velocity, 2.43-3.16 m/s. These values of velocity, if converted into the prototype velocity by dimensional analysis, are in the general range of the velocity of debris flow.
With the addition the grid dam, the separation of coarse and fine particles, as well as the separation of soil and water, was good. As a result, particles accumulated in the upstream of the barrier were increased to 47.2 % from 5% when no grid dam existed, and the slope gradient was decreased to about 5, which would reduce the impact of future debris flow. The depth of scouring in the downstream of the barrier also decreased 30.7%. However, the effective soil-water separation made the flow increased velocity and accordingly reduced particles deposited.
Moreover, compared to the wrap-around and glued types of barrier, the grouted panel had good performance in resisting deformation and abrasion from debris flow. On the other hand, the wrap-around type performed better in resisting scouring because of its flexible structure. This suggests that different types of facing may be used at different locations of a barrier to achieve best performance in resisting the impact of debris flow.
誌謝 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究方法 2
1.4 研究內容 2
第二章 文獻回顧 5
2.1加勁結構物 5
2.1.1地工合成材加勁土結構 5
2.1.2加勁工法文獻 6
2.2土石流介紹 7
2.2.1土石流定義 7
2.2.2土石流特性 8
2.2.3土石流災害 11
2.2.4土石流防治 11
2.2.5現地案例 12
2.3影像速度分析 12
第三章 土石流衝擊模型試驗 30
3.1模型設計與實驗設備 30
3.1.1模型相似性 30
3.1.2 模型砂箱 30
3.1.3攝影設備 31
3.1.4量測設備 31
3.2試驗材料 32
3.2.1加勁壁壘 32
3.2.2土石流 33
3.2.3格子壩模型 33
3.3試驗規劃 34
3.3.1試驗控制條件 34
3.3.2探討內容 34
3.4試驗步驟 35
3.4.1試體準備 35
3.4.2試驗流程 35
第四章 試驗結果與分析 53
4.1重複性試驗 53
4.2土石流衝擊灌漿面板式壁壘 53
4.2.1流動過程 53
4.2.2土石流速度 54
4.2.3衝擊力分析 55
4.2.4衝擊後變形 55
4.2.5淘刷與堆積 56
4.2.6撞擊後土石粒徑分析 56
4.3土石流衝擊灌漿面板式壁壘結合格子壩 57
4.3.1流動過程 57
4.3.2土石流速度 57
4.3.3淘刷與堆積 58
4.3.4土石粒徑分析 58
4.4綜合歸納整理 59
第五章 不同型式加勁壁壘之綜合比較 91
5.1不同型式之加勁壁壘介紹 91
5.2流動行為 91
5.3土石流速度 91
5.4變形與位移 92
5.5淘刷與堆積 92
5.6壁壘受損情形 93
5.7施工性 93
第六章 結論與建議 100
6.1結論 100
6.1.1土石流衝擊灌漿面板壁壘 100
6.1.2土石流衝擊壁壘結合格子壩 101
6.1.3不同型式加勁壁壘 101
6.2建議 102
參考文獻 103
[1]行政院農業委員會(2005),水土保持手冊。
[2]何敏龍(1997),土石流發生機制與流動制止結構物之研究,國立台灣大學土木工程學系,博士論文。
[3]周必凡、李德基、羅德富、呂儒仁、楊慶溪(1991),泥石流防治指南,科學出版社,96-108頁。
[4]林炳森、林基源(1999),土石流之衝擊力與防治工程法介紹,地工技術雜誌,第74期,67-80頁。
[5]柳文成、黃偉哲、毛培宇(2016),應用攝影測量技術量測灌溉渠道表面流速與推估流量之研究,農業工程學報,第62卷,第2期,45-47頁。
[6]洪晨瑋(2016),爐石水泥改良高嶺土之強度特性,國立台灣大學土木工程學系,碩士論文。
[7]施瑋庭(2014),應用地工合成材加勁擋土牆防治土石流之研究,國立台灣大學土木工程學系,碩士論文。
[8]連惠邦(2005),土石流防治工程法之研究評估,行政院農委會水土保持局,73-76頁。
[9]陳榮河、紀伯全(2010),模型邊坡試驗之因次分析,地工技術雜誌,第125期,7-17頁。
[10]張立憲(1985),土石流特性之探討,中華水土保持學報,第16卷,第1期,135-141頁。
[11]張馨文(2016),加勁護岸應用於土石流防治之模型試驗,國立台灣大學土木工程學系,碩士論文。
[12]黃宏斌(1991),土石流之發生模式探討,農業工程學報,第37卷,第4期,35-47頁。
[13]詹錢登(2000),土石流概論,科技圖書股份有限公司。
[14]經濟部水利署水利規劃試驗所(2011),水工模型試驗參考手冊。
[15]歐泰林(2004),台灣東、北、中區土石流特性之分析,國立台灣大學土木工程學系,碩士論文。
[16]土屋昭彥(1980),河川•ダム•防砂用語事典,山海堂出版社,256-260頁。
[17]池谷浩(1980),土石流災害調查法,日本山海堂,16-20頁。
[18]高橋保(1977),土石流の發生と流動に關する研究,京大防災研究所年報,No.20,B-2。
[19]蘆田和男、高橋保、道上正規(1983),河川の土砂災害と對策,森北出版株式會社。
[20]Adams, M., Nicks, J., Stabile, T., Wu, J., Schlatter, W., & Hartmann, J. (2012). Geosynthetic-reinforced soil integrated bridge system, Interim implementation guide, Report No. FHWA-HRT-11-026, Federal Highway Administration, Washington, D.C., USA.
[21]ASTM D2216-05. Standard test method for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, West Conshohocken, PA, USA.
[22]Federal Highway Administration (2013). Composite behavior of geosynthetic reinforced soil mass, USA.
[23]Gollin, D., Bowmanand, E., & Shepley, P. (2015). Methods for the physical measurement of collisional particle flows. International Symposium on Geohazards and Geomechanics, 26, 160-166.
[24]Johnson, A. M. & Rodine, J. R. (1984). Debris flow. Slope Instrability, 257-361.
[25]Lueptow, R.M., Akonur, A., & Shinbrot, T. (2000). PIV for granular flows, Experiment in Fluids, 28, 183-186.
[26]Soudé, M., Chevalier, B., Grediac, M., Talon, A., & Gourves, R. (2013). Experimental and numerical investigation of the response of geocell-reinforced walls to horizontal localized impact. Geotextiles and Geomembranes,39, 39-50.
[27]PIV view2C/3C, 2006, version 2.4, User Manual. PIVTEC, Germany.
[28]Recio, J., & Oumerai, H. (2007). Effect of deformations on the hydraulic stability of coastal structures made of geotextile sand containers. Geotextiles and Geomembranes, 25, 278-292.
[29]Sarno, L., Papa, M.N., Tai, Y.C., Carravetta, A., & Martino, R. (2014). A reliable PIV approach for measuring velcty profiles of highly sheared granular flows. Latest Trends in Engineering Mechanics, Structures,Engineering Geology, 134-141.
[30]Strouth, A., Pritchard, M., Roche, D., & Vanbuskirk, C. (2012). Geosynthetics-reinforced soil walls for debris barrier in Whistler, B.C.. Geosynthetics, 30 (4), 14-21.
[31]White, D. J., Take, W. A. & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, Geotechnique, 53(2), 619-631.
[32]Yasuhara, K., & Recio-Molina, J. (2007). Geosynthetic-wrap around revetments for shore protection. Geotextiles and Geomembranes, 25(4), 221-232.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔