|
1Zwanzig, R. W. (1960). Collision of a gas atom with a cold surface. The Journal of Chemical Physics, 32(4), 1173-1177. 2Adelman, S. A., & Doll, J. D. (1974). Generalized Langevin equation approach for atom/solid‐surface scattering: Collinear atom/harmonic chain model. The Journal of Chemical Physics, 61(10), 4242-4245. 3Doll, J. D., Myers, L. E., & Adelman, S. A. (1975). Generalized Langevin equation approach for atom/solid‐surface scattering: Inelastic studies. The Journal of Chemical Physics, 63(11), 4908-4914. 4Adelman, S. A., & Doll, J. D. (1976). Generalized Langevin equation approach for atom/solid‐surface scattering: General formulation for classical scattering off harmonic solids. The Journal of Chemical Physics, 64(6), 2375-2388. 5Cai, W., de Koning, M., Bulatov, V. V., & Yip, S. (2000). Minimizing boundary reflections in coupled-domain simulations. Physical Review Letters, 85(15), 3213. 6Appelö, D., & Kreiss, G. (2006). A new absorbing layer for elastic waves. Journal of Computational Physics, 215(2), 642-660. 7To, A. C., & Li, S. (2005). Perfectly matched multiscale simulations. Physical Review B, 72(3), 035414. 8Appelö, D., & Colonius, T. (2009). A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. Journal of Computational Physics, 228(11), 4200-4217. 9Fang, M., Wang, X., Li, Z., Tang, S. (2013). Matching Boundary Conditions for Scalar Waves in Body-Centered-Cubic Lattices. Advances in Applied Mathematics and Mechanics, 5(03), 337-350. 10Wang, X., & Tang, S. (2013). Matching boundary conditions for lattice dynamics. International Journal for Numerical Methods in Engineering, 93(12), 1255-1285. 11Weinan, E., & Huang, Z. (2001). Matching conditions in atomistic-continuum modeling of materials. Physical Review Letters, 87(13), 135501. 12Li, X., & Weinan, E. (2006). Variational boundary conditions for molecular dynamics simulations of solids at low temperature. Communications in Computational Physics, 1(1), 135-175. 13Li, X., & Weinan, E. (2007). Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath. Physical Review B, 76(10), 104107. 14Jones, R. E., & Kimmer, C. J. (2010). Efficient non-reflecting boundary condition constructed via optimization of damped layers. Physical Review B, 81(9), 094301. 15Venturini, G., Yang, J. Z., Ortiz, M., & Marsden, J. E. (2011). Replica time integrators. International Journal for Numerical Methods in Engineering, 88(6), 586-611. 16Wagner, G. J., & Liu, W. K. (2003). Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 190(1), 249-274. 17Wagner, G. J., Karpov, E. G., & Liu, W. K. (2004). Molecular dynamics boundary conditions for regular crystal lattices. Computer Methods in Applied Mechanics and Engineering, 193(17), 1579-1601. 18Park, H. S., Karpov, E. G., Liu, W. K., & Klein, P. A. (2005). The bridging scale for two-dimensional atomistic/continuum coupling. Philosophical Magazine, 85(1), 79-113. 19Karpov, E. G., Wagner, G. J., & Liu, W. K. (2005). A Green''s function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations. International Journal for Numerical Methods in Engineering, 62(9), 1250-1262. 20Tang, S., Hou, T. Y., & Liu, W. K. (2006). A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. Journal of Computational Physics, 213(1), 57-85. 21Medyanik, S. N., Karpov, E. G., & Liu, W. K. (2006). Domain reduction method for atomistic simulations. Journal of Computational Physics, 218(2), 836-859. 22Tang, S. (2010). A two-way interfacial condition for lattice simulations. The Advance in Applied Mathematic and Mechanics, 2, 45-55. 23Pang, G., & Tang, S. (2011). Time history kernel functions for square lattice. Computational Mechanics, 48(6), 699-711. 24Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Physical Review, 136(2A), A405. 25Tang, S., and Liu, B. (2015). Heat Jet Approach for Atomic Simulations at Finite Temperature. Communications in Computational Physics, 18(05), 1445-1460. 26Leach, A. R. (2001). Molecular modelling: principles and applications. Pearson education. 27Hu, J., Ruan, X., & Chen, Y. P. (2012). Molecular dynamics study of thermal rectification in graphene nanoribbons. International Journal of Thermophysics, 33(6), 986-991. 28Makov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab initio calculations. Physical Review B, 51(7), 4014. 29Ruiz, G., & Michell, J. A. (2013). Design and Architectures for Digital Signal Processing, InTech, ISBN 978-953-51-0874-0. 30Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19.
|