跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱越
研究生(外文):Kai-Yueh Chang
論文名稱:高強度鋼纖維混凝土外部梁柱接頭剪力強度與反復側推行為研究
論文名稱(外文):Shear Strength and Cyclic Behavior of High Strength Steel Fiber Reinforced Concrete Exterior Beam-Column Joints
指導教授:廖文正廖文正引用關係
指導教授(外文):Wen-Cheng Liao
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:223
中文關鍵詞:鋼纖維外部梁柱接頭New RC韌性比剪力強度
外文關鍵詞:Steel FiberExterior Beam-Column JointNew RCToughness RatioShear Strength
相關次數:
  • 被引用被引用:3
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著建築技術提升,對建築材料之強度需求也越來越高,日本New RC Project使用高強度材料以縮減構件尺寸及節省材料用量。然而相較於普通強度混凝土,高強度混凝土達極限強度後強度驟降,設計時應將此脆性破壞納入考量,故ACI 318-14要求使用高強度混凝土 (f_c^''≥70MPa)時,需配置更多橫向鋼筋維持柱構件韌性。
特殊抗彎構架中梁柱接頭為重要傳力單元,在設計時皆以緊密箍筋配置確保其具足夠韌性;惟梁柱接頭中已有柱及梁主筋之交會,實務上再綁紮緊密橫向鋼筋常會出現鋼筋過密施工困難的問題。此一施工問題,在構件尺寸較小、要求配置較傳統RC結構更多橫向鋼筋的New RC結構系統中,將更為困難。
本研究重點在於探討添加鋼纖維於高強度混凝土外部梁柱接頭中,完全或部分取代橫向鋼筋,其耐震能力的表現,並進一步評估其接頭剪力強度及量化圍束能力。
實驗計畫設計了兩支實尺寸之外部梁柱接頭,接頭區皆澆置體積取代率1.5%之高強度鋼纖維混凝土,在分別為低軸力比及高軸力下進行反復側推試驗。其中低軸力試體以接頭發生剪力破壞進行設計,以評估其接頭剪力強度;高軸力試體依柱構件以韌性比量化鋼纖維取代橫向鋼筋之圍束效益回歸公式進行設計,藉以印證該設計式於接頭中之適用性。低軸力試體試驗結果顯示高強度鋼纖維接頭即便無配置任何橫向鋼筋,其抗剪容量是規範設計值之1.9倍;且雖然為接頭剪力破壞,接頭外觀仍相當完整,並符合ACI 374耐震性能規範中合格接頭之各項要求。高軸力試體試驗結果確認柱構件之韌性比回歸公式可用於設計梁柱接頭,於高軸力下鋼纖維能取代75%之橫向鋼筋量。此研究顯示將高強度鋼纖維混凝土應用於梁柱接頭上,不論是抗剪能力或是損傷容限,皆有良好表現;且不論在剪力強度評估或是鋼纖維取代橫向圍束鋼筋,都有設計公式可供直接應用。
關鍵字: 鋼纖維、外部梁柱接頭、New RC、韌性比、剪力強度
The New RC Project conducted by Japan in 1988 mainly used high strength materials to reduce the section sizes of members and to save the consumption of materials. However, the brittle nature of high strength concrete should be considered compared to ductile response of normal strength concrete. Therefore, ACI 318-14 requires denser transverse reinforcement while using high strength concrete (f_c^''≥70MPa) in column members to assure its toughness.
For special moment frames, beam-column joint is a key element to transfer shear and moment forces. Nevertheless, beam-column is an intersection of longitudinal reinforcement of beams and columns along with transverse reinforcement of columns. The heavy reinforcement arrangement may result in construction difficulty and poor construction quality. This issue could be severer in New RC members since their section sizes are smaller. Addition of steel fiber in beam column joints may be an alternative to transverse reinforcement since its validity has been verified in columns.
This study investigates the seismic performances of high strength fiber reinforced exterior beam-column joints. Estimation of shear strengths and quatification of confinement efficiency are also discussed.
Two full-scale high strength fiber reinforced exterior beam-column joints with 1.5% volume fraction steel fibers were subjected cyclic loading under low and high axial loading levels respectively. The high axial load specimen was designed to verify the fiber confinement efficiency in terms of toughness ratio. The test results show not only toughness ratio can properly quantify fiber confinement efficiency in beam-column joints, but 75% of transverse reinforcement can be eliminated owing to steel fibers under high axial loading. The other specimen was designed to obtain its shear capacity under low axial loading level by joint shear failure. The test results show that its shear strength is 1.91 times of that suggested in ACI 318, even there is no any transverse reinforcement in the joint. The specimen ends up with shear failure, but it still can keep the good shape and satisfy all the criterions of a qualified beam-column joints required in ACI 374. In summary, application of high strength fiber reinforced concrete in New RC beam-column joints offers opportunities to significantly simplify the design and construction work, while ensuring adequate ductility and damage tolerance.
Keywords: Steel fiber, Exterior beam-column joint, New RC, Toughness ratio, Shear strength.
誌謝 ii
摘要 iv
Abstract v
目錄 vii
表目錄 xi
圖目錄 xii
照片目錄 xvii
第一章、 緒論 1
1.1. 動機與目的 1
1.2. 研究範圍與內容 4
1.3. 研究流程圖 5
第二章、 文獻回顧 6
2.1. 高強度鋼筋混凝土 6
2.1.1 高強度混凝土 6
2.1.2 高強度鋼筋 7
2.2. 鋼纖維混凝土力學性質 8
2.2.1 添加鋼纖維於混凝土之力學性質影響 8
2.2.2 鋼纖維混凝土受直拉作用下之行為表現 13
2.2.3 端鉤型鋼纖維之拉拔行為 16
2.3. 鋼筋混凝土柱及鋼纖維混凝土之韌性比回歸公式 25
2.3.1 韌性指數之定義 25
2.3.2 鋼筋混凝土柱韌性比回歸公式 26
2.3.3 鋼纖維鋼筋混凝土柱韌性比回歸公式 30
第三章、 梁柱接頭相關研究 34
3.1. 各國規範對梁柱接頭之設計規定 34
3.1.1 ACI 318-14 規範 34
3.1.2 ACI 318-11規範 41
3.1.3 ACI 374.1-05 梁柱接頭之試驗合格標準 42
3.1.4 AIJ 1999設計指針 45
3.2. 台灣高強度鋼筋混凝土結構設計手冊-梁柱接頭 47
3.2.1 剪力強度 47
3.2.2 接頭箍筋 50
3.2.3 接頭鋼筋伸展及錨定 51
3.3. 軟化壓拉桿模型於梁柱接頭之剪力強度評估 54
3.4. 梁柱接頭耐震行為相關研究 61
3.5. 接頭試驗反復推柱與推梁之比較 71
3.6. 本研究之對照組試體-實尺寸外部梁柱接頭 73
3.7. 試驗破壞模式界定 74
第四章、 實驗計畫 76
4.1. 實驗背景 76
4.2. 試體設計 77
4.2.1 試體參數與名稱 77
4.2.2 試體設計細節 80
4.3. 實驗材料與配比 84
4.3.1 實驗材料 84
4.3.2 實驗配比 86
4.4. 實驗試體製作 86
4.4.1 鋼筋應變計黏貼 86
4.4.2 試體澆置 89
4.5. 實驗儀器與配置 93
4.5.1 試體及儀器架設 93
4.5.2 內部量測系統 94
4.5.3 外部量測系統 95
4.5.4 其他相關設備 98
4.6. 實驗施作流程 99
4.6.1 前置作業 99
4.6.2 加載歷程 100
4.6.3 實驗過程記錄 101
第五章、 試驗結果 102
5.1. 材料試驗 102
5.1.1 鋼筋拉伸試驗 102
5.1.2 混凝土/鋼纖維混凝土圓柱抗壓試驗 104
5.2. 梁柱接頭反復側推試驗 107
5.2.1 MATS機台測力修正 107
5.2.2 接頭之剪力V_jh 109
5.2.3 遲滯迴圈與包絡線 110
5.2.4 裂縫發展與試體破壞情形 116
5.2.5 內部量測-鋼筋降伏情況 120
5.2.6 外部量測-接頭轉角比例 121
第六章、 結果與討論 129
6.1. 反復側推實驗結果比較 129
6.1.1 遲滯迴圈 129
6.1.2 消能行為 133
6.1.3 勁度衰減 136
6.1.4 裂縫發展與試體破壞 138
6.2. 柱韌性比對梁柱接頭之評估可行性 141
6.3. 各抗剪容量模型之比較 143
6.4. ACI 374.1-05耐震性能評估 146
6.5. 建議箍筋體積比 ρsh 之比較 151
第七章、 結論與建議 153
7.1. 結論 153
7.2. 建議 154
參考文獻 156
附錄A 混凝土配比及試驗報告 161
附錄B SD685 (#11)鋼筋拉伸試驗報告 162
附錄C 試體應變計數據 163
附錄D 各梁柱接頭試體於各層間變位角照片 202
附錄E 試體設計圖說 215
簡歷 223
[1]ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary,” American Concrete Institute, 2014.
[2]ACI Committee 374.1-05, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, ” 2005.
[3]Alwan, J. M., Naaman, A. E., and Guerrero, P., “Effect of Mechanical Clamping on the Puul-out Response of Hooked Steel Fibers Embedded in Cementitious Composites,” Concrete Science and Engineering, Vol. 1, No. 1, pp. 15-25, 1999.
[4]Aoyama, H., “Development of Advanced Reinforced Concrete Buildings with High-Strength and High-Quality Materials,” Earthquake Engineering Tenth World Conference, Rotterdam, 1992.
[5]Bencardino, F., Rizzuti, L., Spadea, G., and Swamy, R.,” Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression,” Journal of Materials in Civil Engineering, ASCE, Vol. 20, March, 2008.
[6]Brooke, N. J., and Ingham, J., "Seismic Design Criteria for Reinforcement Anchorages at Interior RC Beam-Column Joints." J. Struct. Eng., 10.1061/(ASCE) ST.1943-541X.0000762, 1895-1905. 2013.
[7]Fanella, David A., and Naaman, Antoine E., “Stress-Strain Properties of Fiber Reinforced Mortar in Compression,” J. Am. Concr. Inst., 82 (4), 475-483, 1985.
[8]FEMA, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA 356, Washington D.C., USA, 2000.
[9]Foster, S. J., Liu, J., and Sheikh, S. A., “Cover Spalling in HSC Columns Loaded in Concentric Compression,” Journal of Structural Engineering, ASCE, Vol. 124, No. 12, pp. 1431-1437, 1998.
[10]Fu, J., Chen, T., Wang, Z., Bai, S., “Effect of Axial Load Ratio on Seismic Behavior of Interior Beam-Column Joints,” 12WCEE:12th World Conference on Earthquake Engineering, 2000.
[11]Hsu, L. S., and Hsu, C. T., “Stress-Strain Behavior of Steel-Fiber High-Strength Concrete under Compression,” ACI Structural Journal, July-August, 1985.
[12]Hsu, T. C., ”Nonlinear Analysis of Concrete Membrane Elements,” ACI Structural Journal, Vol. 88, No. 5, September-October, 1991.
[13]Hwang, S. J., Lee, H. J., Liao, T. F., Wang, K. C., Tsai, H. H., “Role of Hoops on Shear Strength of Reinforced Concrete Beam-Column Joints,” ACI Structural Journal, Vol. 102, No. 3, May-June, 2005.
[14]Li, B., “Seismic Performance of Reinforced Concrete Beam-Column Joints Strengthened by Ferrocement Jackets,” Ph.D, The Hong Kong Polytechnic University, 2014.
[15]Li, V. C., Wang, Y., and Backer, S., “Effect of Inclining Angle, Bundling and Surface Treatment on Synthetic Fiber Puul-out from A Cement Matrix,” Journal of Composites, 48 Vol. 21, No. 2, pp. 132-140, 1990.
[16]Li, V. C., Wang, “Postcrack scaling relations for fiber reinforced cementitious composites,” Journal of Materials in Civil Engineering, pp. 41-57, 1992.
[17]Lee, H. J., and Hwang, S. J., “High-Strength Concrete and Reinforcing Steel in Beam-Column Connections,” Structures Congress 2013, ASCE, Proceedings ISBN: 978-0-7844-1284-8, American Society of Civil Engineers, Pittsburgh, Pennsylvania, United States, May 2-4, 2013, pp. 1606-1615, 2013.
[18]Mendis, P. A., Panagopoulos, C., “Applications of High Strength Concrete in Seismic Regions,” 12WCEE:12th World Conference on Earthquake Engineering, 2000.
[19]Moehle, J. P., “Seismic Design of Reinforced Concrete Buildings,” ISBN: 9780071839440, McGraw-Hill Education, 784 pp, 2015.
[20]Naaman, A. E., and Reinhardt, H. W., “Characterization of High Performance Fiber Reinforced Cement Composites—HPFRCC,” High Performance Fiber Reinforced Cement Composites 2, Proceedings of the Second International RILEM Workshop, Ann Arbor, MI, pp. 1-24, 1996.
[21]NZS 3101, “Concrete Structures Standard Part 1-The Design of Concrete Structures,” Standards New Zealand, Wellington, New Zealand, 2006.
[22]Ou, Y.-C.; Canseco, H. A.; and Kurniawan, D. P., "Anchorage Performance of Headed Deformed Bars in Exterior Beam-Column Joints under Cyclic Loading," KSCE Journal of Civil Engineering, 2017.
[23]Oluokun, F. A., “Prediction of Concrete Tensile Strength from Its Compressive Strength:Evaluation of Existing Relations for Normal Weight Concrete,” ACI Mechanicals Journal, Vol. 88, No. 3, pp. 302-309, 1991.
[24]Park, R., “Evaluation of Ductility of Structures and Structural Assemblages from Laboratory Testing,” Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 22, No. 3, Sep. 1989.
[25]Parra-Montesinos, G. J., Peterfreund, S. W., Chao, S. H., “Highly Damage-Tolerant Beam-Column Joints Trough Use of High-Performance Fiber-Reinforced Cement Composites,” ACI Structural Journal, Vol. 102, No. 3, May-June, 2005.
[26]Sheikh, S. A., and Uzumeri, S. M. “Strength and Ductility of tied concrete columns,” J. Struct. Div., A.S.C.E., 106 (5), 1079-1102, 1980.
[27]Song, P. S., and Hwang, S., “Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete,” Construction and Building Materials, Vol. 18, pp.669-673, 2004.
[28]Sugano, S., Kimura, H., and Shirai, K., “Study of New RC Structures Using Ultra-High-Strength Fiber-Reinforced Concrete (UFC)-The Challenge of Applying 200 MPa UFC to Earthquake Resistant Building Structures,” Journal of advanced concrete technology, 5 (2), pp. 133-147, 2007.
[29]Sugano, S., “Application of High Strength and High Performance Concrete in Seismic Region,” Invited Lecture in the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, pp.27-29, October, 2008.
[30]Xu, B., Ju, J. W., and Shi, H. S., “Progressive Micromechanical Modeling for Pullout Energy of Hooked-end Steel Fiber in Cement-based Composites,” SAGE. International Journal of Damage Mechanics, 2011.
[31]王又德,「高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究」,碩士論文,國立台灣大學土木工程學研究所,台北,2015。
[32]內政部營建署,「混凝土結構設計規範」,臺灣,民國100年6月。
[33]李宏仁,「鋼筋混凝土耐震梁柱接頭剪力強度之研究」,博士論文,國立台灣科技大學營建工程學系,2000。
[34]李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估─軟化壓拉桿模型簡算法之實例應用」,結構工程,Vol. 17, No. 4, pp. 53-70, December, 2002.
[35]林英如,「新型高強度鋼筋混凝土梁柱接頭反復載重試驗之資料庫建置與參數分析」,碩士論文,國立雲林科技大學營建工程系碩士班,2011。
[36]郭耀仁,「高強度鋼纖維混凝土的力學性質與圍束效應之研究」,碩士論文,國立台灣大學土木研究所,2012。
[37]曾笠維,「以鋼纖維取代橫向箍筋於New RC柱之應用評估」,碩士論文,國立台灣大學土木工程學研究所,台北,2014。
[38]趙偉帆,「使用擴頭鋼筋錨定之高強度鋼筋混凝土梁柱接頭在P-δ效應下耐震行為研究」,國立台灣科技大學營建工程系,2016。
[39]蔡仁傑,「鋼筋混凝土開孔牆之側力位移曲線預測」,碩士論文,國立台灣大學土木工程學研究所,台北,2015。
[40]蘇韋如,「添加高強度端鉤型鋼纖維於外部梁柱接頭之反復側推行為研究」,碩士論文,國立台灣大學土木工程學研究所,台北,2016。
[41]曾鈺軒,「鋼纖維混凝土於外部梁柱接頭剪力強度評估與設計建議」,碩士論文,國立台灣大學土木工程學研究所,台北,2017。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top