跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何宜庭
研究生(外文):Yi-Ting Ho
論文名稱:混凝土於單軸壓下表面裂縫特徵與軸壓行為分析研究
論文名稱(外文):Analysis of Surface Crack Characteristics and Compressive Behavior of Concrete under Uniaxial Compression
指導教授:廖文正廖文正引用關係
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:236
中文關鍵詞:混凝土影像量測裂縫特徵單軸抗壓試驗破壞能
外文關鍵詞:concreteimage measurementcrack characteristicsuniaxial compression testfracture energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混凝土為土木工程最常見的材料之一,且因為混凝土有耐久、耐火,容易造型且經濟的特性,故廣泛用於房屋建築、橋梁等構造物。混凝土結構在內外應力作用下,往往會有裂縫的產生,進而影響結構物的耐久性與承載能力;在工程實務上,混凝土表面裂縫是唯一能經由目視,且直接測量的指標。因此若能連結混凝土表面裂縫特徵與構件殘餘強度等相關力學性質關係,將能提供混凝土構件之安全性評估;唯過去受侷於裂縫量測技術的限制,較難量化包括裂縫長度、寬度及密度等裂縫特徵。
本研究利用數位影像量測的方式,針對不同水灰比、粗粒料粒徑大小及粗粒料含量,快速建立混凝土軸向應變、側向應變、體積應變與軸向應力之間力學行為關係,且偵測並量化混凝土受壓過程中的表面裂縫特徵,包含裂縫密度、平均裂縫長度、平均裂縫寬度和最大裂縫寬度,探討混凝土應力應變曲線與裂縫特徵的關聯,可提供混凝土在受單軸壓下,其表面裂縫特徵所對應的力學行為,並推估其殘餘力學強度。由試驗結果顯示,混凝土受單軸壓過程會受到幾何性質和邊界條件影響,是一綜合材料與結構的力學表現。另外,由表面裂縫特徵發現,最大裂縫寬度和應力損失(∆SLE)以及線彈性段折減係數(RLE)之間呈較佳的線性行為,亦即在同樣的水灰比之下,有相同的裂縫寬度,就有相同的應力損失和折減係數,和國際間利用最大裂縫寬度指標去評估建築物殘餘強度的應用相似。在破壞能方面,其和裂縫密度之間呈現良好的對數遞增關係,但無論水灰比的高低以及粗粒料尺寸、數量的變化,在相同的裂縫密度下,均有相近的破壞能。
Concrete is one of the widely used construction material in infrastructures owing to its high durability, low cost and economic advantages. However, cracks tend to propagate under internal and external stresses in concrete, thus affecting its strength and durability. Surface cracks of concrete are the only indexes that can be observed with naked eyes and easily identified.
This study involves monitoring and quantifying surface cracks of concrete to conduct the connection between surface crack characteristics and mechanical properties of concrete under uniaxial compressive loading. Digital image measurements are applied in this research to measure the crack characteristics and to establish the relationship between axial strain, lateral strain, volumetric strain and axial stress. The crack characteristics include crack density, average crack length and maximum crack width, etc. With the data of uniaxial compression tests of concrete, regression analysis is also accomplished to obtain the correlation between concrete strength and crack characteristics. The experimental results show that the concrete subjected to uniaxial compression is affected by geometric properties and boundary conditions. Moreover, maximum crack width and the stress loss are linearly increasing, while crack density and the compressive fracture energy are logarithmically increasing. The regression results in this study can be further applied to estimate residual strength of concrete with certain crack characteristics.
誌謝 i
摘要 ii
Abstract iii
表目錄 ix
圖目錄 xi
照片目錄 xviii
第一章、 緒論 1
1.1. 研究動機與目的 1
1.2. 研究範圍與內容 2
1.3. 研究流程圖 3
第二章、 文獻回顧 4
2.1. 混凝土裂縫 4
2.1.1 微觀裂縫與巨觀裂縫 4
2.1.2 裂縫種類與成因 4
2.1.3 影響裂縫之參數 5
2.2. 混凝土力學性質 8
2.2.1 應力應變曲線 8
2.2.2 峰值前之力學反應 11
2.2.3 峰值後之力學反應 12
2.2.4 應力應變曲線之數值迴歸方法 13
2.3. 混凝土軟化行為 14
2.3.1 定義與成因 14
2.3.2 局部變形 15
2.3.3 破壞區長度與破壞能定義 17
2.4. 混凝土受軸壓之材料行為與結構行為 20
2.4.1 幾何性質 20
2.4.2 邊界條件 21
2.5. 配比對混凝土軸壓力學行為的影響 25
2.5.1 水灰比 25
2.5.2 粗粒料最大粒徑 25
2.5.3 粗粒料量 27
第三章、 影像技術應用於混凝土應變與裂縫量測 28
3.1. 影像技術應用於混凝土應變量測 28
3.1.1 應變偵測 29
3.1.2 影像與傳統量測方式之比較與修正 33
3.1.3 影像數據與數值分析之結合 35
3.2. 影像應用於混凝土裂縫量測 36
3.2.1 裂縫偵測 36
3.2.2 裂縫診斷 41
3.2.3 影像技術限制 43
3.2.4 影像程式驗證 43
3.3. 量化混凝土表面裂縫特徵 46
3.3.1 裂縫特徵分析流程 46
3.3.2 裂縫特徵定義 47
第四章、 實驗計畫 49
4.1. 實驗背景 49
4.2. 實驗材料與配比 50
4.2.1 實驗材料 50
4.2.2 實驗配比 53
4.3. 試體設計 54
4.3.2 試體參數與名稱 55
4.3.3 試體尺寸 55
4.3.4 試體邊界條件 56
4.4. 實驗儀器與施作程序 57
4.4.1 實驗儀器 57
4.4.2 實驗施作程序 60
第五章、 實驗結果與討論 61
5.1. 材料試驗 61
5.1.1 標準混凝土圓柱抗壓強度 61
5.1.2 彈性模數 63
5.2. 1:2高摩擦力圓柱軸壓行為 65
5.2.1 應力應變曲線 65
5.2.2 軸向應變與側向應變之關係 67
5.2.3 軸向應力與體積應變之關係 68
5.2.4 裂縫發展與破壞模式 69
5.3. 1:1高摩擦力圓柱軸壓行為 71
5.3.1 應力應變曲線 71
5.3.2 軸向應變與側向應變之關係 74
5.3.3 軸向應力與體積應變之關係 75
5.3.4 裂縫發展與破壞模式 76
5.4. 1:1低摩擦力圓柱軸壓行為 77
5.4.1 應力應變曲線 77
5.4.2 軸向應變與側向應變之關係 79
5.4.3 軸向應力與體積應變之關係 80
5.4.4 裂縫發展與破壞模式 81
5.5. 1:1低摩擦力變斷面圓柱軸壓行為與裂縫特徵 82
5.5.1 應力應變曲線 82
5.5.2 軸向應變與側向應變之關係 84
5.5.3 軸向應力與體積應變之關係 86
5.5.4 裂縫發展與破壞模式 87
5.5.5 裂縫特徵 88
第六章、 分析與比較 96
6.1. 軸壓行為 96
6.1.1 極限強度綜合比較 96
6.1.2 破壞能綜合比較 97
6.1.3 1:2與1:1高摩擦力圓柱綜合比較 100
6.1.4 1:1高摩擦力與低摩擦力圓柱綜合比較 104
6.1.5 1:1低摩擦力圓柱與1:1低摩擦力變斷面圓柱綜合比較 108
6.1.6 裂縫發展與破壞模式綜合比較 112
6.2. 裂縫特徵 115
6.2.1 裂縫特徵與應力損失(∆SLE) 115
6.2.2 裂縫特徵與線彈性段強度折減係數(RLE) 130
6.2.3 裂縫特徵與完美彈塑性模型強度折減係數(REPP) 151
6.2.4 裂縫特徵與軸向應變 162
6.2.5 裂縫特徵與破壞能(GFc) 169
第七章、 結論與建議 183
7.1. 結論 183
7.1.1 軸壓行為 183
7.1.2 裂縫特徵 184
7.2. 建議 185
參考文獻 187
附錄A 190
簡歷 236
[1]ASTM C39/C39M.(2009). "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens," ASTM International.
[2]Bloem, D. L. and Gaynor, R. D. (1963) "Effects of Aggregate Properties on Strength of Concrete," ACI Journal, Proceedings V. 60, No. 10, October, pp. 1429-1456.
[3]Cordon, W. A. and Gillespie, H. A. (1963) "Variables in Concrete Aggregates and Portland Cement Paste Which Influence the Strength of Concrete," ACI Journal, Proceedings V. 60, No.8, August, pp. 1029-1052.
[4]Cook, J. E. (1989). "10,000 psi Concrete," Concrete International, October, pp. 67-7 5.
[5]Glucklich, J., Proceedings of International Conference on the Structure of Concrete, Cement andConcrete Association, Wexham Springs, Slough, U.K., pp. 176–185, 1968.
[6]Hsu, T.T.C. &; Slate, F.O., (1963) "Tensile bond strength between aggregate and cement paste or mortar" ACI Journal, 465-486.
[7]J. G. M., van Mier and H. -K. Man (2009). "Some Notes on Microcracking, Softening, Localization, and Size Effects." International Journal of Damage Mechanics Vol. 18, Apr.2009, pp.283-309.
[8]Ken Watanabe, Junichiro Niwa, Hirosh Yokota and Mitsuyasu Iwanami (2004). “Experimental Study on Stress-Strain Curve of Concrete Considering Localized Failure in Compression.” Journal of Advanced Concrete Technology Vol.2, No.3, Oct.2004, pp.395-407.
[9]Kiendle, O. G., & Maldari, J. A. (1938). “Comparison of physical properties of concretes made of three varieties of course aggregates”, Unpublished Thesis, University of Wisconsin, Madison Wisc, 1938.
[10]Kotsovos, M. D. (1983). "Effect of Testing Techniques on the Post-Ultimate Behavior of Concrete in Compression." Materials and Structures 16(1): 3-11.
[11]König, G., Simsch, G. and Ulmer, M. (1994). "Strain Softening of Concrete" ,Technical University of Darmstadt, October 1994) pp.67
[12]Lertsrisakulrat, T., Watanabe K., Matsuo, M. and Niwa, J. (2001). “Experimental Study on Parameters in Localization of concrete subjected to Compression.” Journal of Materials, Concrete Structures, Pavements, JSCE, 50(669), pp.309-321.
[13]Mendis, P. A., Panagopoulos, C. (2000) "Applications of High Strength Concrete in Seismic Regions", 12th World Conference on Earthquake Engineering.
[14]Mindess, S. (1991). "Fracture Process Zone Detection, In: Shah, S.P. and Carpinteri, A. (eds)", Report RILEM TC 89-FMT Fracture Mechanics Test-Methods for Concrete, pp. 231–261, Chapman & Hall, London/New York.
[15]Moavenzadeh, F. and Kuguel, R. (1969) "Fracture of Concrete," Journal of Materials, JMLSA, V.4, No.3, pp.497-519.
[16]M. Roddenberry, R. Kampmann, M. H. Ansley, N. Bouchard, and W. V. Ping, “Failure Behavior of Concrete Cylinders under Different End Conditions,” ACI Materials Journal, No.108-M10, Jan.-Feb.2011, pp.79-87.
[17]Nakamura, H. and Higai, T. (1999). “Compressive fracture energy and fracture zone length of concrete.” JCI-C51E Post-peak Behavior of RC Structures subjected to Seismic Loads, 2, 259-272.
[18]Nemecek, J. & Bittnar, Z. (2004). ''Experimental investigation and numerical simulation of post-peak behavior and size effect of reinforced concrete columns.'' Material and Structures, Springer Netherlands, Vol.37, No.3, pp.161-169.
[19]Otsu, N., “A Threshold Selection Method from Gray-Level Histograms”, IEEE Trans. Syst. Man. Cybern., Vol. 9, No. 1, pp. 62-66 (1979).
[20]R.A. Vonk, H.S. Rutten, K. Willam and J.G.M. van Mier (1992). "Softening of concrete loaded in compression", Eindhoven: Technische Universiteit Eindhoven, 1992.
[21]Ruiz, W. M. (1966) "Effect of Volume of Aggregate on the Elastic and Inelastic Propertis of Concrete," M.S. Thesis, Cornell University, January.
[22]Sandor Popovics (1973). "A numerical approach to the complete stress-strain curve of concrete." CEMENT and CONCRETE RESEARCH, Vol. 3, pp. 583-599, 1973.
[23]van Vliet, M. R. A., & van Mier, J. G. M. (1996). "Experimental investigation of concrete fracture under uniaxial compression." Mechanics of Cohesive-Frictional Materials, Vol.1, pp.115-127
[24]Vecchio, F., and Collins, M.P.(1986) "The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear", American Concrete Institute Journal, Vol. 83, No.2, Mar-Apr. 1986, pp.219-231.
[25]Walker, S. and Bloem, D. L. (1960). "Effects of Aggregate Size on Properties of Concrete", ACI Journal, Proceedings V. 57, No.3, September, pp. 283-298.
[26]Z. P. BazÏant (1999). "Effects on structural strength: a review", Archive of Applied Mechanics 69, pp,703-725.
[27]黃仲偉、陳北亭、廖文正、何宜庭、周光武,(2016),「混凝土變斷面圓柱試體軸壓載重裂縫特徵分析」,第十三屆中華民國結構工程研討會,桃園。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top