1.ASTM D2850-03a. (20067). Standard test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International, West Conshohocken, PA, USA.
2.ASTM D4253-00. (2006). Standard test Method for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA.
3.ASTM D422-63. (2007). Standard test method for particle size analysis of soils. ASTM International, West Conshohocken, PA, USA.
4.ASTM D5321-08. (2008). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International, West Conshohocken, PA, USA.
5.ASTM D7181-11. (2011). Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA.
6.ASTM D4767-11. (2011). Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, USA.
7.ASTM D854-06e1. (2006). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA.
8.Baig, S., Picornell, M., and Nazarian, S., “Low Strain Shear Moduli of Cemented Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp. 540-545 (1997).
9.Been, K., Jefferies, M. G. and Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.
10.Been, K. and Jefferies, M. G. (1985). A state parameter for sands. 35(2).
11.Bishop, A. W. and Eldin, G. (1950). Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength. Géotechnique, 2(1), 13-32.
12.Bishop, A. W. and Green, G. E. (1965). The influence of end restraint on the compression strength of a cohesionless soil. Géotechnique, 15(3), 243-266.
13.Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65-78.
14.Casagrande, A. (1936). Characteristics of cohesionless soils affecting the stability of earth fills. Boston Society of Civil Engineers, 257-276.
15.Duncan, J. M. and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils.
16.Dyvik, R., and Madshus, C., “Lab Measurements of Using Bender Elements,” Advances in the Art of Testing Soil Under Cyclic Conditions, Conference, Detroit, MI, Geotechnical Engineering Division, ASCE, New York, pp. 186-196 (1985) Journal of the Soil Mechanics and Foundations Division, 96(5), 1629-1653.
17.Finno, R. and Rechenmacher, A. (2003). Effects of consolidation history on critical state of sand. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 350-360. doi: doi:10.1061/(ASCE)1090-0241(2003)129:4(350)
18.Hansen, B. (1958). Line ruptures regarded as narrow rupture zones, basic equation based on kinematic conditions. Proceedings of Conference of earth pressure Problems, Brussels, Belgium 39–51
19.Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocity in Granular Soil,” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963)
20.Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
21.Head, K. H. (1985). Manual of Soil Laboratory Testing: Volume 3: Effective Stress Tests (Vol. 3): Pentech Press.
22.Holtz, R. D. and Kovacs, W. D. (1981). An introduction to geotechnical engineering: Prentice Hall Press.
23.Hosseini, S. M., Haeri, S. M. and Toll, D. G. (2005). Behavior of gravely sand using critical state concepts. Scientia Iranica, 12(2), 167-177.
24.Jefferies, M. and Been, K. (2006). Soil Liquefaction: A Critical State Approach. New York: Taylor & Francis.
25.Iwasaki, T., and Tatsuoka, F., “Effect of Grain Size and Grading on Dynamic Shear Modulus of Sand,” Soil and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35 (1977).
26.Iwasaki, T., Tasuoka, F., and Takagi, Y., “Shear Modulus of Sands under Cyclic Torsional Shear Loading,” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56 (1978).
27.Jovicic, M., Coop, R., and Simic, M., “Object Criteria for Determining from Bender Element Tests,” Geotechnique 46, No. 2, pp. 357-362 (1996)
28.Lade, P.V., and Yamamuro, J.A., “Effect of Non-Plastic Fines on Static Liquefaction of Sands,” Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 918-928 (1997).
29.Lee, K. L. (1978). End restraint effects on undrained static triaxial strength of sand.
30.Mahmoud, H., Hosein, S., and Habib, S. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects,” International Journal of Civil Engineering, Vol. 6, No. 2, pp. 108-119 (2008).
31.Mooney, M., Finno, R. and Viggiani, M. (1998). “A unique critical state for sand,” Journal of Geotechnical and Geoenvironmental Engineering, 124(11), 1100-1108. doi: doi:10.1061/(ASCE)1090-0241(1998)124:11(1100)
32.Norris, G. M. (1981). Effect of end membrane thickness on the strength of "frictionless" cap and base tests. Philadelphia, PA, ETATS-UNIS: American Society for Testing and Materials.
33.Polito, C.P., and Martin, J.R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoenvironmental Engineering, pp. 408-415, May (2001).
34.Poulos, S., Castro, G. and France, J. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792. doi: doi:10.1061/(ASCE)0733-9410(1985)111:6(772).
35.Raju, V. S., Sadasivan, S. K. and Venkataraman, M. (1972). Use of lubricated and conventional end platens in triaxial tests on sands. Soils and Foundations, 12(4), 35-43.
36.Roscoe, K.H. and Burland, J.B. (1968). On The Generalised Stress-Strain Behaviour of ‘Wet’ Clay: Cambridge University Press.
37.Roscoe, K. H., Schofield, A. N. and Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8(1), 22-53.
38.Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 269(1339), 500-527. doi: 10.2307/2414551
39.Sadrekarimi, A. (2012). Effect of sample-preparation method on critical-state behavior of sands. Geotechnical Testing Journal, 35(4), 104317.
40.Salgado, R., Bandini, P., and Karim, A., “Shear Strength and Stiffness of Silty Sand,” Journal of Geotechnical and Geoenvironmental Engineering, (2000).
41.Schofield, A. N. and Wroth, C. P. (1968). Critical State Soil Mechanics: McGraw-Hill.
42.Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, (1970).
43.Shirley D.J., and Hampton, L.D., “Shear-Wave Measurements in Laboratory Sedimenta,” Journal of Acoust. Soc Am.63, No. 2, Feb., pp. 607-613 (1978).
44.Tatsuoka, F, and Haibara, O. (1985). Shear resistance between sand and smooth or lubricate surfaces. Soils and Foundations, 25(1), 88-98.
45.Vasquez-Herrera, A. and Dobry, R. (1989). The behavior of undrained contractive sand and its effect on seismic liquefaction flow failures of earth structures.
46.Viggiani, G., and Atkinson, J.H., “Interpretation of Bender Element Tests,” Geotechnique 45, No. 1, pp. 149-154 (1995).
47.Wang, Y.H., Lo, K.F., Yan, W.M., and Dong, X.B. “Measurement Biases in the Bender Element Test,” Journal of Geotechnical and Geoenvironmental Engineering 133(5): 564-574.
48.Wood, D. M. (1990). Soil Behaviour and Critical State Soil Mechanics: Cambridge University Press.
49.Yamamuro, J. and Lade, P. (1998). Steady-state concepts and static liquefaction of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 868-877. doi: doi:10.1061/(ASCE)1090-0241(1998)124:9(868)
50. 羅乾豪,「細粒料含量對剪力波速影響之研究 」,碩士論文,國立成功大學土木工程學系,2011年。51.廖廷勛,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論 文,國立台灣科技大學營建工程學系,1998 年。
52.李彥霆,「單剪試驗下細粒料對砂土臨界狀態參數之影響」,碩士論文,國立暨南國際大學土木工程學系,2009年。
53.黃渝紋,「三軸壓縮試驗探討蜂巢格網的圍束效應」,碩士論文,國立台灣大學土木工程學系,2012年。54.龔東慶、歐章煜,「土壤小應變三軸詴驗之發展與應用」,地工技術,第 96 期 (民國 92 年 6 月) 第 5-16 頁。55.鄒永銘,「端座潤滑對體積膨脹與顆粒破碎之影響」,碩士論文, 國立台灣大學土木工程學系,1985年。56.陳律村,「傳統三軸應力路徑下石英砂之臨界狀態與其力學行為」,碩士論文, 國立台灣大學土木工程學系,2013年。