跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國勳
研究生(外文):Kuo-Hsun Huang
論文名稱:澎湖鈣質砂土臨界狀態參數與最大剪力模數之探討
論文名稱(外文):Determination of Critical State Parameters and Maximum Shear Modulus of Penghu Calcareous Sand
指導教授:郭安妮郭安妮引用關係
指導教授(外文):Annie On-Lei Kwok
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:146
中文關鍵詞:三軸壓縮試驗彎曲元件試驗臨界狀態鈣質砂土最大剪力模數剪力波速潤滑端坐
外文關鍵詞:triaxial compression testbender element testcritical statecalcareous sandmaximum shear modulusshear wave velocitylubricated end platen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來由於陸地上的發展趨於飽和,工程上開始逐漸往海上推進,如:離岸風機,以大地工程的部分著手,研究生物殘骸碎屑之砂土靜態與動態力學行為。
當土壤在大應變時,孔隙比(或孔隙水壓)與平均有效應力保持在穩定的狀態時稱之為臨界狀態。臨界狀態在發展過程中,經過理論的推導與實驗結果,建立一套完整的理論架構;除此之外,臨界狀態概念下延伸之狀態參數也可用於預測現地土壤的力學參數與變形行為,由此可知臨界土壤力學的確能在工程分析與設計上帶來幫助。
許多研究的試驗結果表示,砂土在臨界狀態下與其孔隙比和平均有效應力間呈現不唯一線性關係。由於鈣元素在鈣質砂土中結構與膠結狀態較脆弱,而導致孔隙比與土顆粒在實驗過程中產生變化,因此,這將會是決定鈣質砂土在臨界狀態的一項挑戰。
為了決定鈣質砂的臨界土壤參數與最大剪力模數,本研究將執行一系列的三軸壓縮試驗與彎曲元件試驗,相對密度、排水條件、過壓密比、不同實驗配置方法為本次試驗的變異數;另外,潤滑端坐可排除三軸試驗過程中產生的端坐效應,提升實驗結果的精準度。本次研究最後將最大剪力模數與臨界狀態參數的相關性做彙整。
Critical state is attained when void ratio and volumetric strain become constant as normal strain becomes very large. The relationship between void ratio and mean effective stress for some materials can be represented by a linear critical state line, however some studies showed that a critical state zone, rather than a single line, may exist for certain materials.
To describe the soil behavior under dynamic loading, strain-dependent shear modulus is often used. In the laboratory test, bender element tests are often used to estimate the shear wave velocity (hence shear modulus) at very small strain level.
As an alternative source of energy, Taiwan government is planning to construct a series of offshore wind turbines near the coast of western Taiwan and potentially near Penghu. As the coastal sediments may contain remains of marine creatures, they would be rich in calcium. In this research, properties of Penghu calcareous sand are of interest. Critical state parameters are determined by performing triaxial compression tests while bender element tests are performed to determine the shear modulus at very small shear strain level (Gmax). Correlation relationship between undrained shear strength at critical state and Gmax would be developed. Since very small strain shear modulus can be readily determined in the field, the established correlation relationship can potentially help estimate the undrained shear strength of Penghu calcareous sand which would be important in dynamic analysis involving failure.
口試委員審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES XI
LIST OF TABLES XVII
Chapter 1 Introduction 1
1.1 Motivation and Purpose 1
1.2 Research Method 2
1.3 Thesis Organization 3
Chapter 2 Literature Review 4
2.1 Introduction 4
2.2 Critical State of Soil Behavior 4
2.3 Relevant Research of Sand Critical State 10
2.3.1 Sand Critical State 10
2.3.2 Triaxial Test 11
2.3.3 Plane Strain Compression Test 18
2.4 Soil Properties of Calcareous Sand 21
2.5 Relevant Research of Triaxial Test with Lubrication 23
2.6 Determination of Soil Dynamic Properties 28
2.6.1 Soil Shear Wave Velocity Measurement 29
2.6.2 The Influence to Shear Modulus from Void Ratio 31
2.6.3 The Influence to Shear Modulus from Average Effective Confining Pressure 34
2.6.4 The Factor Influence to Shear Wave Velocity 35
2.7 Shear Wave Velocity to Evaluate Critical State of Sand 39
Chapter 3 Experimental Program 41
3.1 Introduction 41
3.2 Test Program 41
3.3 Test Material and Engineering Property 43
3.3.1 Soil Specific Gravity Test 44
3.3.2 Determination of Maximum and Minimum Dry Unit Weights 44
3.3.3 Scanning Electron Microscopy (SEM) Analysis 45
3.4 Triaxial Test Apparatus and Instrument Calibration 47
3.4.1 Triaxial Test Apparatus 47
3.4.2 Instrument Calibration 51
3.4.3 Rubber Membrane Young’s Modulus Calibration 51
3.5 Preparation of Soil Specimen 53
3.6 Bender Element Test Apparatus and Instrument Calibration 58
3.6.1 Introduction of Bender Element 58
3.6.2 Principle of Bender Element 58
3.6.3 Effective Distance of Shear Wave Transmission 59
3.6.4 Determination of Shear Wave Transmission Time 60
3.6.5 Bender Element Test Apparatus 63
Chapter 4 Experiment Results 65
4.1 Introduction 65
4.2 Specimens with Dr = 80% 71
4.2.1 Triaxial Compression Drained Test (CD test) for specimens at Dr = 80% 71
4.2.2 Triaxial Compression Undrained Test (CU test) for specimens at Dr = 80% 72
4.2.3 Triaxial Compression Drained Test (CD test) for specimens at Dr = 80% with lubrication 73
4.2.4 Triaxial Compression Drained Test (CD test) for specimens with Dr = 80% and OCR = 2 74
4.2.5 Triaxial Compression Drained Test (CD test) with Dr = 80% and OCR = 4 74
4.3 Dr = 50% Triaxial Compression Test 75
4.3.1 Triaxial Compression Drained Test (CD test) Result for specimens with Dr = 50% 75
4.3.2 Triaxial Compression Undrained Test (CU test) for Specimens at Dr = 50% 76
4.3.3 Triaxial Compression Drained Test (CD test) for Specimens at Dr = 50% with OCR = 2 77
4.3.4 Triaxial Compression Drained Test (CD test) for Specimens at Dr = 50% with OCR = 4 77
4.4 Triaxial Compression Test for Specimens at Dr = 30% 78
4.4.1 Triaxial Compression Drained Test (CD test) for Specimens with Dr = 30% 78
4.4.2 Triaxial Compression Undrained Test (CU test) for Specimens with Dr = 30% 79
4.4.3 Triaxial Compression Drained Test (CD test) for Specimens with Dr = 30% and Lubrication 80
4.4.4 Triaxial Compression Drained Test (CD test) for Specimens with Dr = 30% and OCR = 2 80
4.4.5 Triaxial Compression Drained Test (CD test) for Specimens with Dr = 30% and OCR = 4 81
4.5 Saturated Unconsolidated Undrained Triaxial Compression Test (SUU test) for Specimens at Dr = 30%, 50%, and 80%, 82
4.6 Bender Element Test Result 82
4.6.1 Shear Wave Velocity for Specimens with Dr = 30%, 50%, and 80% 82
4.6.2 Shear Wave Velocity for Specimens with OCR = 2 and 4 with Dr = 30%, 50%, and 80% 82
Chapter 5 Analysis and Discussion 109
5.1 Introduction 109
5.2 Influence of Different Test Variables on Triaxial Test Results 109
5.2.1 Influence of Relative Density 109
5.2.2 Influence of Confining Pressure 111
5.2.3 Influence of Drainage Condition 112
5.2.4 Influence of Over Consolidation Ratio (OCR) 115
5.2.5 Influence of Lubrication Method on Triaxial Test Results at Peak State 115
5.3 Estimation of Friction Angle at Peak State 118
5.4 Influence of Calcium 123
5.5 Critical State for Penghu Calcareous Sand 125
5.6 Analysis of Bender Element Test Results 129
5.7 Correlation of Undrained Shear Strength with Maximum Shear Modulus 132
Chapter 6 Conclusion and Recommendation 134
6.1 Introduction 134
6.2 Conclusion 134
6.3 Recommendation 135
References 137
Appendix- Calibration Test Results 143
1.ASTM D2850-03a. (20067). Standard test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International, West Conshohocken, PA, USA.
2.ASTM D4253-00. (2006). Standard test Method for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA.
3.ASTM D422-63. (2007). Standard test method for particle size analysis of soils. ASTM International, West Conshohocken, PA, USA.
4.ASTM D5321-08. (2008). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International, West Conshohocken, PA, USA.
5.ASTM D7181-11. (2011). Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA.
6.ASTM D4767-11. (2011). Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, USA.
7.ASTM D854-06e1. (2006). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA.
8.Baig, S., Picornell, M., and Nazarian, S., “Low Strain Shear Moduli of Cemented Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp. 540-545 (1997).
9.Been, K., Jefferies, M. G. and Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.
10.Been, K. and Jefferies, M. G. (1985). A state parameter for sands. 35(2).
11.Bishop, A. W. and Eldin, G. (1950). Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength. Géotechnique, 2(1), 13-32.
12.Bishop, A. W. and Green, G. E. (1965). The influence of end restraint on the compression strength of a cohesionless soil. Géotechnique, 15(3), 243-266.
13.Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65-78.
14.Casagrande, A. (1936). Characteristics of cohesionless soils affecting the stability of earth fills. Boston Society of Civil Engineers, 257-276.
15.Duncan, J. M. and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils.
16.Dyvik, R., and Madshus, C., “Lab Measurements of Using Bender Elements,” Advances in the Art of Testing Soil Under Cyclic Conditions, Conference, Detroit, MI, Geotechnical Engineering Division, ASCE, New York, pp. 186-196 (1985) Journal of the Soil Mechanics and Foundations Division, 96(5), 1629-1653.
17.Finno, R. and Rechenmacher, A. (2003). Effects of consolidation history on critical state of sand. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 350-360. doi: doi:10.1061/(ASCE)1090-0241(2003)129:4(350)
18.Hansen, B. (1958). Line ruptures regarded as narrow rupture zones, basic equation based on kinematic conditions. Proceedings of Conference of earth pressure Problems, Brussels, Belgium 39–51
19.Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocity in Granular Soil,” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963)
20.Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
21.Head, K. H. (1985). Manual of Soil Laboratory Testing: Volume 3: Effective Stress Tests (Vol. 3): Pentech Press.
22.Holtz, R. D. and Kovacs, W. D. (1981). An introduction to geotechnical engineering: Prentice Hall Press.
23.Hosseini, S. M., Haeri, S. M. and Toll, D. G. (2005). Behavior of gravely sand using critical state concepts. Scientia Iranica, 12(2), 167-177.
24.Jefferies, M. and Been, K. (2006). Soil Liquefaction: A Critical State Approach. New York: Taylor & Francis.
25.Iwasaki, T., and Tatsuoka, F., “Effect of Grain Size and Grading on Dynamic Shear Modulus of Sand,” Soil and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35 (1977).
26.Iwasaki, T., Tasuoka, F., and Takagi, Y., “Shear Modulus of Sands under Cyclic Torsional Shear Loading,” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56 (1978).
27.Jovicic, M., Coop, R., and Simic, M., “Object Criteria for Determining from Bender Element Tests,” Geotechnique 46, No. 2, pp. 357-362 (1996)
28.Lade, P.V., and Yamamuro, J.A., “Effect of Non-Plastic Fines on Static Liquefaction of Sands,” Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 918-928 (1997).
29.Lee, K. L. (1978). End restraint effects on undrained static triaxial strength of sand.
30.Mahmoud, H., Hosein, S., and Habib, S. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects,” International Journal of Civil Engineering, Vol. 6, No. 2, pp. 108-119 (2008).
31.Mooney, M., Finno, R. and Viggiani, M. (1998). “A unique critical state for sand,” Journal of Geotechnical and Geoenvironmental Engineering, 124(11), 1100-1108. doi: doi:10.1061/(ASCE)1090-0241(1998)124:11(1100)
32.Norris, G. M. (1981). Effect of end membrane thickness on the strength of "frictionless" cap and base tests. Philadelphia, PA, ETATS-UNIS: American Society for Testing and Materials.
33.Polito, C.P., and Martin, J.R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoenvironmental Engineering, pp. 408-415, May (2001).
34.Poulos, S., Castro, G. and France, J. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792. doi: doi:10.1061/(ASCE)0733-9410(1985)111:6(772).
35.Raju, V. S., Sadasivan, S. K. and Venkataraman, M. (1972). Use of lubricated and conventional end platens in triaxial tests on sands. Soils and Foundations, 12(4), 35-43.
36.Roscoe, K.H. and Burland, J.B. (1968). On The Generalised Stress-Strain Behaviour of ‘Wet’ Clay: Cambridge University Press.
37.Roscoe, K. H., Schofield, A. N. and Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8(1), 22-53.
38.Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 269(1339), 500-527. doi: 10.2307/2414551
39.Sadrekarimi, A. (2012). Effect of sample-preparation method on critical-state behavior of sands. Geotechnical Testing Journal, 35(4), 104317.
40.Salgado, R., Bandini, P., and Karim, A., “Shear Strength and Stiffness of Silty Sand,” Journal of Geotechnical and Geoenvironmental Engineering, (2000).
41.Schofield, A. N. and Wroth, C. P. (1968). Critical State Soil Mechanics: McGraw-Hill.
42.Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, (1970).
43.Shirley D.J., and Hampton, L.D., “Shear-Wave Measurements in Laboratory Sedimenta,” Journal of Acoust. Soc Am.63, No. 2, Feb., pp. 607-613 (1978).
44.Tatsuoka, F, and Haibara, O. (1985). Shear resistance between sand and smooth or lubricate surfaces. Soils and Foundations, 25(1), 88-98.
45.Vasquez-Herrera, A. and Dobry, R. (1989). The behavior of undrained contractive sand and its effect on seismic liquefaction flow failures of earth structures.
46.Viggiani, G., and Atkinson, J.H., “Interpretation of Bender Element Tests,” Geotechnique 45, No. 1, pp. 149-154 (1995).
47.Wang, Y.H., Lo, K.F., Yan, W.M., and Dong, X.B. “Measurement Biases in the Bender Element Test,” Journal of Geotechnical and Geoenvironmental Engineering 133(5): 564-574.
48.Wood, D. M. (1990). Soil Behaviour and Critical State Soil Mechanics: Cambridge University Press.
49.Yamamuro, J. and Lade, P. (1998). Steady-state concepts and static liquefaction of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 868-877. doi: doi:10.1061/(ASCE)1090-0241(1998)124:9(868)
50. 羅乾豪,「細粒料含量對剪力波速影響之研究 」,碩士論文,國立成功大學土木工程學系,2011年。
51.廖廷勛,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論 文,國立台灣科技大學營建工程學系,1998 年。
52.李彥霆,「單剪試驗下細粒料對砂土臨界狀態參數之影響」,碩士論文,國立暨南國際大學土木工程學系,2009年。
53.黃渝紋,「三軸壓縮試驗探討蜂巢格網的圍束效應」,碩士論文,國立台灣大學土木工程學系,2012年。
54.龔東慶、歐章煜,「土壤小應變三軸詴驗之發展與應用」,地工技術,第 96 期 (民國 92 年 6 月) 第 5-16 頁。
55.鄒永銘,「端座潤滑對體積膨脹與顆粒破碎之影響」,碩士論文, 國立台灣大學土木工程學系,1985年。
56.陳律村,「傳統三軸應力路徑下石英砂之臨界狀態與其力學行為」,碩士論文, 國立台灣大學土木工程學系,2013年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top