跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張人傑
研究生(外文):Jen-Chieh Chang
論文名稱:決定梁的自然頻率的瑞利商及最佳邊界函數正交法
論文名稱(外文):Using Rayleigh quotient and orthogonality of optimal boundary functions to determine natural frequencies of beams
指導教授:鍾立來鍾立來引用關係劉進賢
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:37
中文關鍵詞:尤拉梁自然頻率瑞利商最佳邊界函數正交性上界理論
外文關鍵詞:Euler BeamNatural FrequencyRayleigh quotientOptimal Boundary FunctionOrthogonalityUpper Bound Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統方法中,我們使用特徵函數代入瑞利商極值法用以決定真實自然頻率。當梁為均勻條件時,可以直接使用公式快速求解,但是遇到非均勻梁時求解過程將會變得極其繁瑣。
而在本篇論文中,我們採用滿足所有邊界條件的邊界函數,取代傳統的特徵函數代入瑞利商,以此為替代方法。我們可以略去解繁瑣的四階微分函數,只需用正交性代入邊界函數快速得到誤差很小之估計自然頻率。其中,邊界函數為一種最低為四次之多項式,可以用來求一階自然頻率,而k階邊界函數則可用來求解k-3階自然頻率。
最後,比較近似解與真實解
In the traditional method, we use the eigenfunction to replace the Rayleigh quotient method to determine the true natural frequency. When the beam is uniform, you can use the formula to solve the true natural frequency quickly, but the process of solving the nonuniform beam will become extremely diffcult.
    In this paper, we use the boundary function that satisfies all the boundary conditions, instead of the traditional eigenfunction into Rayleigh quotient, as an alternative. We can skip the cumbersome fourth-order differential function, just use orthogonality into the boundary function to quickly get the error is very small estimate of the natural frequency. Among them, the boundary function is a minimum of four polynomials, can be used to find the first order natural frequency, and k-order boundary function can be used to solve k-3 order natural frequency.   
  Finally, we compare the approximate third order natural frequencies before the solution with the real solution. We find that the error value is very small and also confirms the satisfying upper bound theory.
致謝 II
中文摘要 III
ABSTRACT III
目錄 VII
表目錄 VIII
圖目錄 VIIII
第一章 緒論 9
1.1 前言 9
1.2 文獻回顧 9
1.3 研究動機與目的 10
1.4 論文架構 10
第二章 理論基礎 12
2.1 尤拉樑理論(Euler-Bernoulli Beam Theory) 12
2.2 簡支樑(Simple Beam ) 12
2.3 懸臂樑(Cantilever Beam ) 13
2.4 兩端固定梁(Two-end fixed) 13
2.5 一端固定,一端簡支(Clamped-pinned beam) 14
2.6 一端固定,一端導向支承(Clamped-guided beam) 14
2.7 一端簡支,一端導向支承(Pinned-guided beam) 15
2.8 Rayleigh商數 (Rayleigh Quotient) 15
第三章 尤拉樑的線性邊界函數 17
3.1 尤拉樑的邊界函數推導 17
3.2 四階邊界函數 17
3.2.1 建構邊界函數規則 18
3.2.2 線性邊界函數 19
3.2.3 五階邊界函數 19
3.2.4 六階邊界函數 20
3.2.5 簡易推導高階邊界函數 21
3.3 將邊界函數導入Rayleigh商數 22
3.4 兩種特性 22
3.5 利用正交性求解自由參數 23
第四章 數值算例 25
4.1 數值算例一 26
4.2 數值算例二 29
4.3 數值算例三 29
第五章 未來研究與建議 35
5.1 結論 35
參考文獻 37
[1]Abrate, S., 1995. Vibration of non-uniform rods and beams. Journal of Sound and Vibration 185, 703-716.
[2]Aucielloa, N. M., Ercolanob, A., 2004. A general solution for dynamic response ofaxially loaded non-uniform Timoshenko beams. International Journal of Solidsand Structures 41(18-19), 4861-4874.
[3]Bahrami, M. N., Arani, M. K., Saleh, N. R., 2011. Modified wave approach for calculationof natural frequencies and mode shapes in arbitrary non-uniform beams.Scientia Iranica B 18, 1088-1094.
[4]Cem Ece, M., Aydogdu, M., Taskin, V., 2007. Vibration of a variable cross-sectionbeam. Mechanics Research Communications 34, 78-84.
[5]Chakraverty, S., Behera, L., 2015. Free vibration of non-uniform nanobeams usingRayleigh-Ritz method. Physica E 67, 38-46.
[6]Cranch, E. T., Adler, A. A., 1956. Bending vibration of variable section beams.Journal of Applied Mechanics 23, 103-108.
[7]Datta, A. K., Sil, S. N., An analysis of free un-damped vibration of beams of varyingcross-section. Journal of Compututers and Structures 59, 479-483.
[8]Goorman, D. J., 1975. Free Vibrations of Beams and Shafts. Wiley, New York.Gra↵, K. F., 1975. Wave Motion in Elastic Solids. Ohio State University Press.
[9]Hajianmaleki M., Qatu M. S., 2013. Vibrations of straight and curved compositebeams: a review. Composite Structures 100, 218-232.
[10]Hibbeler, R. C., 2001. Engineering Mechanics Dynamics. Prentice-Hall, New York.Ho↵mann, J. A., Wertheimer, T., 2000. Cantilever beam vibration. Journal of Sound and Vibration 229, 1269-1276.
[11]Jafari-Talookolaei R. A., Maryam A., Kargarnovin M. H., Ahmadian M. T., 2012.An analytical approach for the free vibration analysis of generally laminated composite beams with shear e↵ect and rotary inertia. International Journal of Mechanical Sciences 65, 97-104.
[12]Kennedy, G. J., Martins, J. R. R. A., 2012. A homogenization-based theory for anisotropic beams with accurate through-section stress and strain prediction.International Journal of Solids and Structures 49, 54-72.
[13]Laura, P. A. A., Gutierrez, R. H., Rossi, R. E., 1996. Free vibration of beams of bilinearly varying thickness. Ocean Engineering 23, 1-6
[14]Lenci, S., Clementi, F., Mazzilli, C. E. N., 2013. Simple formulas for the naturalfrequencies of non-uniform cables and beams. International Journal of Mechanical Sciences 77, 155-163.
[15]Li, B., Dong L., Zhu, L., Chen, X., 2015. On the natural frequency and vibrationmode of composite beam with non-uniform cross-section. Journal of Vibroengineering 17, 2491-2502.
[16]Malaeke, H., Moeenfard, H., 2016. Analytical modeling of large amplitude free vibration of non-uniform beams carrying a both transversely and axiallyeccentrictip mass. Journal of Sound and Vibration 366, 211-229.
[17]Mazanoglu, K., Sabuncu, M., 2010. Flexural vibration of non-uniform beams having double-edge breathing cracks. Journal of Sound and Vibration 329, 4181-4191.
[18]Naguleswaran, S., 1992. Vibration of an Euler-Bernoulli beam of constant depthand with linearly varying breadth. Journal of Sound and Vibration 153, 509-522.
[19]Naguleswaran, S., 1994. A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams. Journal of Sound and Vibration 172, 289-304.Oh, S. J., Lee, B. K., Lee, I. W., 2000. Free vibrations of non-circular arches withnon-uniform cross-section. International Journal of Solids and Structures. 37(36),4871-4891.
[20]Ozutok, A., Madenci, E., 2013. Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation. International Journal of Structural Stability and Dynamics 13, 1250056.Richard, M. C., 1979. Mechanics of Composite Materials. John Wiley and Sons,New York.Robert, J. M., 1975. Mechanics of Composite Materials. Hemisphere, New York.Sarkar, K., Ganguli, R., 2013. Closed-form solutions for non-uniform Euler-Bernoulli free-free beams. Journal of Sound and Vibration 332, 6078-6092.
[21]Timoshenko, S. P., Goodier, J. N., 1983. Theory of Elasticity, third Ed. McGraw-Hill, New York.
[22]Vidal P., Polit O., 2008. A family of sinus finite elements for the analysis of rectangular
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top