跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張毓文
研究生(外文):Yu-Wen Chang
論文名稱:考慮時間相依之發震模型與長周期盆地效應特徵之地震危害評估
論文名稱(外文):A Framework to Include Time Dependency Earthquake Probability Model and Long-Period Characterization of Basin Topography in Seismic-Hazard Assessment
指導教授:羅俊雄羅俊雄引用關係
指導教授(外文):Chin-Hsiung Loh
口試日期:2017-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:150
中文關鍵詞:地震危害度分析地震發生率模型時間相依條件機率複合式奇異譜分析盆地地形效應地盤放大效應
外文關鍵詞:Probabilistic Seismic Hazard AnalysisEarthquake Recurrence ModelTime-dependent Probability ModelConditional ProbabilityMultivariate Singular Spectrum AnalysisTaipei BasinBasin topography characteristicLocal site effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統耐震設計需求,即為考慮在最具潛勢的地震威脅下,建物尚保有一定的基本防護功能,確保生命財產安全。其耐震需求為一地震動反應譜。常用的評估方法多為定值法與機率法。定值法 (Deterministic approach)為配合地震動評估模型,直接推估對工址最具威脅之震源造成之地震動;而機率法則在於能完全考慮所有型態震源所引致之地震動,對工址可能造成危害之機率統計,此方法則稱為機率式地震危害度分析(probability seismic hazard analysis, PSHA)。在1997年後,重大的公共工程建設,如核能電廠,美國核能法規建議採用地震危害度分析進行地震危害評估。然而,受限於地震源與地震動特徵分析模型,部分特殊的工址所需之設計地震反應譜則需另外進行地盤反應分析,以能得到場址相依的地震動反應譜,如位於盆地地形上的工址。
進行地震危害度分析以求得耐震設計反應譜時,地震源與地震動模型為分析的兩個主要參數。隨著時間演進、資料蒐集與知識的精進,對於地震源與地震動之模擬能接近真實,將會減低分析時的不確定性。在地震源特徵方面,以適當的地震發生模型模擬地震發生在時、空分布的特徵與其不確定性,正是需要資料進行比對以反映此一要求。在地震危害度分析過程中,一般包含區域震源與活動斷層震源。常用之地震發生率的模型,包括截斷指數機率密度函數(Truncated Exponential Model)與Youngs and Coppersmith(1985)之特徵地震模型。PSHA常見的模型假設中,區域震源包含因未知斷層所引致之地震,多應用截斷指數機率密度函數,並在模型中考量一上限規模,限制不合理的地震發生。但此做法則衍伸截斷指數機率密度函數會低估大規模區域地震的發生率。本研究針對此差異將提出複合式模型,以修正區域震源模型對大規模地震發生率的低估。再者,由於台灣因地體構造環境複雜,擠壓作用導致斷層引發大規模地震,如車籠埔斷層等。斷層古地震調查資料顯示,斷層的發震行為屬於時間相依,為再現期可預測模型(time-predictable model)的特徵地震,此現象與應力回彈理論相近,說明斷層地震的發生在短期間內,並不完全符合傳統的Poisson機率分布。針對此部分,本研究以時間相依的機率分布函數,配合工程可靠度分析的理論,計算斷層在未來特定時間內發生錯動之條件機率,提出等值Poisson比,以能套用至傳統地震危害度分析程序所採用Poisson機率分布之用。本研究並提出台灣陸地上25條活動斷層在未來結構壽命(50年)可能之地震規模與對應之發生機率分佈圖,以做為結構設計或防災規劃的參考。
傳統上,地震危害度分析所考量之地震動特徵,即為地震動評估模型,是屬於規模、距離的函數。近年來對於地震動的評估,亦朝向配合震源特徵,精進並多方考慮影響震幅特徵的模型項,如近斷層效應、深度效應與地盤特性等。美國太平洋地震工程研究中心所提出之新一代衰減模型(Next Generation Attenuation)計畫即是朝此方向發展。但受限於資料量,部分模型乃採用模擬方式提出,仍有待資料的驗證。因此,對於特殊地盤上的地震動特徵,由實際資料進行分析是直接的方式。本研究針對台北盆地過去所收集的地震動資料庫為參考,以複合式奇異譜分析的數值分析方法 (Multivariate Singular Spectrum Analysis,MSSA),將因地震所引致的盆地地形效應特徵,於一群地震動資料中取出。針對過去對台北盆地造成重大災情之三個地震(1999集集地震、2002年331花蓮外海地震及1994年南澳地震),由位於盆地內密集之強震測站所收錄的地震紀錄進行分析,得到台北盆地在受三個地震作用下,因盆地地形效應產生共同的主要週期約為2~3秒的長周期波。
因此,在盆地內之地震危害評估,可以地震危害度分析所得之未來特定時間內之岩盤設計地震反應譜,結合盆地地形效應之長周期特徵,則針對台北盆地內工址,考慮時間相依模型與長周期盆地地形效應特徵的設計地震需求可被發展,且直接反應地形效應。MSSA分析的成果也將地震資料內與盆地內軟弱土層所引致之地盤效應分離出來,並與土層深度有關,未來將可作為地盤放大因子之考量。
The objective of a seismic design of building, power plant components and structures is to ensure safety of the plant and the people around in the event of an earthquake. The design basis ground motion is generally specified by a response spectra for various values of damping. Both probabilistic and deterministic methods have a role in seismic design performed for decision-making purposes in over 30 years. Prior to the acceptance and incorporation of probabilistic approach into standard hazard assessment methodologies, most seismic-hazard assessments were completed using scenario-based, “deterministic” analyses. They are proposed to provide design earthquakes for site-specific studies such as the designing of critical structures. The deterministic approach considers the scenarios that have the small occurrence number. Relatively, the all of the possible scenarios will have considered in the probabilistic approach. PSHA provides a key element for engineering seismic design. It is concerned with evaluating the various natural effects of earthquakes at specific levels, which may cause safety or design consequences to critical structures at particular sites such as dams, public structures, and nuclear power plants.
Most of the developments in the PSHA have been primarily concerned with introducing different probabilistic models to describe randomness, such as earthquake magnitude, and recurrence rate, in order to achieve more realistic descriptions for a specific site. The analysis requires characterization of all known earthquake sources that could affect the site, including faults and areal sources. For a particular site, the hazard contributions are integrated over all magnitudes and distances for all source zones, according to the calculation of total probability theory. Extensive advances in seismic knowledge in recent years by a large and active community of researchers around the world, the gaps in the understanding of the mechanisms that cause earthquakes and the recurrence behavior of earthquake are reduced. These gaps in understanding mean that, when a PSHA is performed, the significant uncertainties in the numerical results will be decreased due to the correct models used. Up-to-date knowledge of the source data along with accurate models can provide valuable information in reducing such uncertainties and in facilitating a correct understanding of PSHA.
For the earthquake recurrence model, the seismic data fitting well will promote the reliabilities for the hazard calculation. The subjective judgment and interpretation of the limited data affect the result of PSHA. The earthquake recurrence model that is used to describe the earthquake recurrence rate commonly is defined in epistemic uncertainty due to our lack of knowledge which will be reduced in time. The objectives of this study, one is to discuss the aspects of current model setting that need improvement in the recurrence rate model in the PSHA. The Gutenberg–Richter (1994) exponential frequency–magnitude relation uses to describe the earthquake recurrence rate for a regional source. It is a reference for developing a composite procedure modelled the occurrence rate for the large earthquake of a fault when the activity information is shortage.
Given the probability distribution function relating to the recurrence interval and the occurrence time of the previous occurrence of a fault, a time-dependent probability model of a particular fault for seismic hazard assessment was developed that takes into account the active fault rupture cyclic characteristics during a particular lifetime up to the present time. The time-dependent model was used to describe the fault characteristic behavior. The effects of time-dependent and time-independent models of fault (e.g., Brownian passage time (BPT) and Poisson, respectively) in hazard calculations are also discussed. The proposed fault model result shows that the seismic demands of near fault areas are lower than the current hazard estimation where the time-dependent model was used on those faults, particularly, the elapsed time since the last event of the faults (such as the Chelungpu fault) are short. One of the aims of this study is to understand the effect of seismic source recurrence probability models on the hazard results by quantifying the differences in the design ground motions. Additionally, the difference of hazard contribution between the ranges of source models in the hazard analysis provide to contemplate for source or fault setting in the PSHA.
The analysis also considers the attenuation of seismic energy as it emanates from the earthquake hypocenter to the site of interest, which is evaluated through the use of empirical GMPE. In Addaction, the effects of earthquake-induced basin amplification are caused by the interaction of wave-fields with a basin boundary, which depend on complex source to site distances, basin geometry (topography), and sediment distribution within the basin. In this study the identification of long-period waves induced by strong earthquake motions through basin topography together with local site effects of the basin is investigated. Through multivariate singular spectrum analysis (MSSA), a unique analysis tool for extracting tendencies and harmonic components in geophysical time series is used to extract the long-period wave of basin response caused by the seismic events. Seismic response data of Taipei Basin were used to examine the existing of the lowest dominant frequency of the basin caused by basin topography. Finally, the seismic-induced ground motion data can be separated to the basin motion caused by the effect of topography. A framework to include time dependency earthquake probability model and long-period characterization of basin topography in seismic-hazard assessment will be discussed in this study
口試委員會審定書 I
ACKNOWLEDGEMENTS II
ABSTRACT III
中文摘要 VII
TABLE OF CONTENTS IX
LIST OF FIGURES XIII
CHAPTER 1 INTRODUCTION 1
1.1 Earthquake Recurrence Model 6
1.2 The Conditional Probability of Earthquake Occurrence with Time 7
1.3 Ground Motion Characteristic of Long-period Basin Topography 8
1.3.1 Current Seismic Design Code for Taipei Basin 8
1.4 Objectives of The Study 10
CHAPTER 2 THE UNCERTAINTY FOR EARTHQUAKE RECURRENCE MODEL 19
2.1 Aspects of Current Model Setting that Need Improvement 19
2.1.1 Earthquake Recurrence Model 20
2.1.2 Alternative Model for the Areal Source Zone 23
2.1.3 Alternative Model for the Fault 25
2.2 Sensitivity Analysis of bc-value for the Composite Model 26
2.3 Effect of Seismic Source Model Parameters on the Probabilistic Seismic-Hazard Assessment Results 27
2.3.1 Fault Geometry Setting of the Chelungpu Fault 27
2.3.2 The Hazard Sensitivity of Seismic Source Model Parameters 29
2.3.2.1 Model Setting 29
2.3.3 Effect of the Seismic-Hazard Assessment 32
2.3.3.1 Sensitivity of the PSHA Results to the Model Parameters 33
2.4 Summary 34
CHAPTER 3 TIME DEPENDENCY PROBABILITY MODEL 49
3.1 Introduction 50
3.2 Earthquake Probability Model with Time 50
3.2.1 Poisson Process 51
3.2.2 Renewal Model 51
3.3 The Conditional Probability of Earthquake Occurrence with Time 54
3.4 Seismotectonic Frame and Active Faults in Taiwan 56
3.4.1 The Paleoseismological Investigation in Taiwan 56
3.4.2 The Data and Renewal Model 59
3.5 Time-Dependent Probability of the Faults 59
3.5.1 The Conditional Probability in Tp-year 59
3.5.2 Sensitivity Analysis with Respect to COV of the Renewal Model 60
3.6 The Earthquake Probability Map of Fault: 2017-2067 63
3.7 Equivalent Poisson Ratio (EPR) Estimating for Hazard Calculation 65
3.7.1 The Conditional Probability Ratio (CPR) 66
3.7.2 Equivalent Poisson Ratio (EPR) 67
3.7.3 The Seismic Hazard Map of the Fault Considering the Time-Dependent Model 68
3.8 Conclusion 69
CHAPTER 4 BASIN TOPOGRAPHY CHARACTERISTIC 101
4.1 Introduction 101
4.2 Geography and Geology of the Taipei Basin 104
4.3 Damage Earthquakes for the Taipei Basin 104
4.4 Multivariate Singular Spectrum Analysis 105
4.5 Identification of Basin Characterization 109
4.5.1 Analysis Using Seismic Data from Downhole Measurement 109
4.5.2 Seismic Response Analysis from Basin Earthquake Monitoring Array 110
4.6 Discussion of Residual Components by MSSA 113
4.7 Conclusions 114
CHAPTER 5 SUMMARY AND CONCLUSIONS 131
5.1 Summary 131
5.1.1 The Uncertainty for Earthquake Recurrence Model 131
5.1.2 Effect on the Seismic-Hazard Assessment Results 132
5.1.3 Time Dependency Probability Model 132
5.1.4 Long-Period Ground Motion Characteristic of the Basin Topography 134
5.2 Conclusions 135
5.3 Future Work 138
REFERENCE 141
[1]Abrahamson, N. A. (2006). Seismic Hazard Assessment: Problems with Current Practice and Future Developments, Proceedings, First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, 17 pp.
[2]Abrahamson, N. A., W. J. Silva, and R. Kamai (2014). Summary of the ASK14 Ground Motion Relation for Active Crustal Regions, Earthq. Spectra 30, 1025-1055, doi:http.//dx.doi.org/10.1193/070913EQS198M.
[3]Akinci, A., D. Perkins, A. M. Lombardi, and R. Basili (2010). Uncertainties in probability of occurrence of strong earthquakes for fault sources in the Central Apennines, Italy. J. Seismol. 14(1), 95-117, doi:10.1007/s10950-008-9142-y.
[4]Alonso, F. J., J. M. Del Castillo, and P. Pintado (2005). Application of singular spectrum analysis to the smoothing of raw kinematic signals, Journal of Biomechanics 38(5), 1085-1092.
[5]Angelier, J., E. Barrier, and H. T. Chu (1986). Plate collision and paleostress trajectories in a fold-thrustbelt : the foothills of Taiwan, Tectonophysics 125, 161-178.
[6]Atakan, K., V. Midzi, B. M. Toiran, K. Vanneste, T. Camelbeeck, and M. Meghraoui (2000). Seismic hazard in regions of present day low seismic activity uncertainties in the paleoseismic investigations along the Bree Fault Scarp (Roer Graben, Belgium), Soil Dyn. Earthq. Eng. 20(5-8), 415-427, doi:10.1016/s0267-7261(00)00081-6.
[7]Boe, P. D. and J. C. Golinval (2003). Principal Component Analysis of a Piezosensor Array for Damage Localization, Structural Health Monitoring 2(2), 137-144.
[8]Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthq. Spectra 30, 1057-1085, doi:http://dx.doi.org/10.1193/070113EQS184M.
[9]Bozorgnia, Y., N. A. Abrahamson, L. A. Atik, T. D. Ancheta, G. M. Atkinson, J. W. Baker, A. Baltay, D. M. Boore, K. W. Campbell, B. S.-J. Chiou, R. Darragh, S. Day, J. Donahue, R. W. Graves, N. Gregor, T. Hanks, I. M. Idriss, R. Kamai, T. Kishida, A. Kottke, S. A. Mahin, S. Rezaeian, B. Rowshandel, E. Seyhan, S. Shahi, T. Shantz, W. Silva, P. Spudich, J. P. Stewart, J. Watson-Lamprey, K. Wooddell, and R. Youngs (2014). NGA-West2 Research Project, Earthq. Spectra 30(3), 973-987, doi: 10.1193/072113EQS209M.
[10]Bozzo, E., Carniel, R., and Fasino, D. (2010). Relationship between singular spectrum analysis and Fourier analysis. Theory and application to the monitoring of volcanic activity, Computers and Mathematics with Applications 60(3), 812–820.
[11]Campbell, K. W., and Y. Bozorgnia (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra, Earthq. Spectra 30, 1087-1115, doi: http://dx.doi.org/10.1193/062913EQS175M.
[12]Castagnoli, G. C., C. Taricco, and S. Alessio (2005). Isotopic record in a marine shallow-water core. imprint of solar centennial cycles in the past 2 millennia, Advances in Space Research 35, 504-508.
[13]Chang, Y. W., W. Y. Jean, C. H. Loh, and K. L. Wen (2007). The Application of Time-Predictable Characteristic Earthquake Model for Evaluation of Design Earthquake in Taiwan, Proceedings of 10th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP10), Japan, No.72.
[14]Chang, Y. W., W. Y. Jean, J. F. Chai, C. H. Loh, and K. L. Wen (2008). The Microzonation of Seismic Design Earthquake for Taipei Basin, Proceedings of 14th World Conference on Earthquake Engineering, China Beijing, NO. 07-145.
[15]Chang, Y. W., W. Y. Jean, and S. B. Chiou (2010). Study on Design Earthquakes for Kinmen, Matsu and Penhu Areas, Report of National Center for Research on Earthquake Engineering (NCREE), NCREE-10-016, 76 pp. (in Chinese)
[16]Chiou, B. S.-J., and R. R. Youngs (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthq. Spectra 30, 1117-1153, doi: http://dx.doi.org/10.1193/072813EQS219M.
[17]Chen, W. S., Y. G. Chen, T. K. Liu, N. W. Huang, C. C. Lin, S. H. Sung, and K. J. Lee (2000). Characteristics of the Chi-Chi earthquake ruptures, Central Geological Survey Special Publication 12, 139–154.
[18]Chen, W. S., Y. G. Chen, H. C. Chang, Y. H. Lee, K. J. Lee, L. S. Lee, D. J. Ponti, and C. Prentice, (2001). Paleoseismology of the Chelungpu fault, Central Taiwan, Proceedings of International Symposium on Earthquake and Active Tectonics (iSEAT), Taipei, Taiwan.
[19]Chen, W. S., Y. G. Chen, R.C. Shih, , T. K. Liu, N.W. Huang , C.C. Lin , S. H.Sung, and K. J. Lee (2003). Thrust-related river terrace development in relation to the 1999 Chi-Chi earthquake ruptures, Western Foothills, central Taiwan, J. Asian Ear. Sci. 21, 473-480.
[20]Chen, Y. G., Y. W. Chen, W. S. Chen, J. F. Zhang, H. Zhao, L. P. Zhou, and S. H. Li (2003). Preliminary results of long-term slip rates of 1999 earthquake fault by luminescence and radiocarbon dating, Quat. Sci. Rev 22 10–13, 1213–1221.
[21]Chen, W. S., K. J. Lee, L. S. Lee, D. J. Ponti, C. Prentice, Y. G. Chen, H. C. Chang, and Y. H. Lee (2004). Paleoseismology of the Chelungpu fault during the past 1900 years, Quaternary International 115-116 167-176, doi:10.1016/s1040-6182(03)00105-8.
[22]Chen, W. S., C. C. Yang, I. C. Yen, L. S. Lee, K. J. Lee, H. C. Yang, H. C. Chang, Y. Ota, C. W., Lin, W. H. Lin, T. S. Shih, and S. T. Lu (2007). Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan. Evidence from the Chushan excavation site, Bull. Seismol. Soc. Am. 97(1), 1-13, doi:10.1785/0120050161.
[23]Cheng, S. N., Y. T. Yeh, M. T. Hsu, and T. C. Shin (1999). Atlas of Ten Disastrous Earthquakes in Taiwan, Central Weather Bureau, Ministry of Transportation and Communication, 290pp. (in Chinese).
[24]Campbell, K., and P. Thenhaus (2002). Seismic Hazard Analysis, Earthquake Engineering Handbook Chapter 8: CRC Press.
[25]Coifman, R. R. and M. V. Wickerhauser (1992). Entropy-based algorithms for best basis selection, IEEE Transactions on Information Theory 38(2), 713-718.
[26]Cornell, C. A (1968). Engineering Seismic Risk Analysis, Bull. Seismol. Soc. Am. 58(5), 1583-1606.
[27]Cornell, C. A. and S. R. Winterstein (1988). Temporal and magnitude dependence in earthquake recurrence models, Bull. Seismol. Soc. Am. 78(4), 1522-1537.
[28]Cramer, C. H., M. D. Petersen, T. Cao, T. R. Toppozada, and M. Reichle (2000). A time-dependent probabilistic seismic hazard model for California, Bull. Seismol. Soc. Am. 90, 1-21, doi:10.1785/0119980087.
[29]Der Kiureghian, A. and A. H-S Ang (1977). A Fault-Rupture Model for Seismic Risk Analysis, Bull. Seismol. Soc. Am. 67(4), 1173-1194.
[30]Earthquake Research Committee (ERC) (2005). National Seismic Hazard Maps for Japan, Headquarters for Earthquake Research Promotion. Available from World Wide Web. http://www.jishin.go.jp/main/index-e.html, 162 pp.
[31]Ellsworth, W. L., M. V. Matthews, R. M. Nadeau, S. P., Nishenko, P. A. Reasenberg, and R. W. Simpson (1999). A Physically-Based Earthquake Recurrence Model for Estimation of Long-Term Earthquake Probabilities, U. S. Geological Survey Open-File Report 99-522, 23 pp., http://pubs.usgs.gov/of/1999/0522/.
[32]Field, E. H., G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordan, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon, and Y. Zeng (2015). Long‐Term Time‐Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3), Bull. Seismol. Soc. Am. 105(2A), 511-543, doi:10.1785/0120140093.
[33]Fujiwara, H., N. Morikawa, Y. Ishikawa, T. Okumura, J. Miyakoshi, N. Nojima, and Y. Fukushima (2009). Statistical Comparison of National Probabilistic Seismic Hazard Maps and Frequency of Recorded JMA Seismic Intensities from the K-NET Strong-motion Observation Network in Japan during 1997-2006, Seismol. Res. Lett. 80(3), 458-464, doi:10.1785/gssrl.80.3.458.
[34]Garcia-Aristizabal, A., W. Marzocchi, and E. Fujita (2012). A Brownian model for recurrent volcanic eruptions an application to Miyakejima volcano (Japan), Bull. Volcanol. 74(2), 545-558, doi:10.1007/s00445-011-0542-4.
[35]Golyandina, N., V. Nekrutkin, and A. Zhigljavsky (2001). Analysis of time series structure SSA and related techniques, Boca Raton Fla., Chapman and Hall/CRC.
[36]González, Á., J. B. Gómez, and A. F. Pacheco (2006). Updating seismic hazard at Parkfield, J. Seismol. 10(2), 131-135, doi:10.1007/s10950-005-9005-8.
[37]Gupta, I. D. (2007). Probabilistic seismic hazard analysis method for mapping of spectral amplitudes and other design-specific quantities to estimate the earthquake effects on man-made structures, ISET J. Earthq. Tech. 44(1), 127-167.
[38]Gutenberg, B. and C. F. Richter (1944). Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
[39]Gülerce, Z. and M. Vakilinezhad (2015). Effect of Seismic Source Model Parameters on the Probabilistic Seismic‐Hazard Assessment Results: A Case Study for the North Anatolian Fault Zone, Bull. Seism. Soc. Am. 105(5), 2808-2822.
[40]http://cgsweb.moeacgs.gov.tw/
[41]Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys Res. 84, 2348–2350, doi:10.1029/JB084iB05p02348.
[42]Hong, L. L. and S. W. Guo (1995). Nonstationary Poisson Model for Earthquake Occurrences, Bull. Seismol. Soc. Am. 85(3), 814-824.
[43]Hung, J. H., D. V. Wiltschko, H. C. Lin, J. B. Hickman, P. Fang, and Y. Bock (1999). Structure and motion of the southwestern Taiwan fold and thrust belt, Terr. Atmos. Ocean. Sci. 10(3), 543–568.
[44]Huang, J. Y. (2009). Using Microtremor Measurement to Study the Site Effect in Taiwan Area, M.Sc. Thesis, National Central University, Taiwan, 204 pp (in Chinese). [83]
[45]Huang, Norden E., Z. Shen, R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H.Liu. (1998). The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary time Series Analysis, Proceedings of the Royal Society of London 454, 903-995.
[46]Huang, W. G., B. S. Huang, J. H. Wang, K. C. Chen, K. L. Wen, C. C. Liu, S. H. Tsao, Y. C. Hsieh, and C. H. Chen (2010). Seismic observation in themetropolitan Taipei from the downhole network, Terr. Atmos. Ocean. Sci. 21, 615–625.
[47]Huang, Y. L., B. S. Huang, K. L. Wen, Y. C. Lai, and Y. R. Chen (2010). Investigation for strong ground shaking across the Taipei Basin during the Mw 7.0 eastern Taiwan offshore earthquake of 31 March 2002, Terr. Atmos. Ocean. Sci. 21, 485–493.
[48]Jemwa, G. T. and C. Aldrich. (2006). Classification of process dynamics with Monte Carlo singular spectrum analysis, Computers and Chemical Engineering 30, 816–831.
[49]Jolliffe, I. T. (2002). Principal Component Analysis, 2nd ed., Springer.
[50]Jean, W. Y., Y. W. Chang, C. H. Loh, and K. L. Wen (2006). The probability seismic analysis and the scenario earthquake, Proceedings of Conferences Commemoration of 100th Anniversary of the 1906 Meishan Earthquake, Taiwan. (in Chinese)
[51]Komatitsch, D., Q. Liu, J. Tromp, P. Suss, C. Stidham, and J. H. Shaw (2004). Simulations of ground motion in the Los Angeles basin based upon the spectral-element method, Bull. Seism. Soc. Am. 94, 187–206.
[52]Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K. W. Kuo (2012). Site Classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT, Engineering Geology 129-130, 68-75.
[53]Kuo, C. H., K. L. Wen, C.M. Lin, and J. Y. Huang (2014). Estimating Seismic Site Conditions Using HVSR of Microtremor. Proceedings of The 12th National Conference on Structural Engineering/The Second National Conference on Earthquake Engineering 1101, Kaohsiung, Taiwan.
[54]Lee, S. J., H. W. Chen, and B. S. Huang (2008). Simulations of strong ground motion and 3D amplification effect in the Taipei Basin by using a composite grid finite-difference method, Bull. seism. Soc. Am. 98(3), 1229–1242
[55]Lin, C. W., H. C. Chang, S. T. Lu, T. S. Shih, and W. J. Huang (2000). An introduction of the active faults of Taiwan (Second edition), Special Publication of Central Geological Survey 13. (in Chinese)
[56]Lin, C. W., S. T., Lu, and W. S. Chen, (2012). Active Fault Map of Taiwan: An Explanatory Text (2012 Edition), Special Publication of the Central Geological Survey 26, 30pp. (in Chinese)
[57]Liu, K. S., T. C. Shin, and Y. B. Tsai (1999). A free-field strong motion network in Taiwan TSMIP, Terr. Atmos. Ocean. Sci. 10, 377–396.
[58]Loh, C. H., Z. K. Lee, T. C. Wu, and S. Y. Peng (2000). Ground motion characteristics of the Chi‐Chi earthquake of 21 September 1999, Soil Dyn. Earthq. Eng. 29(6), 867-897.
[59]Loh, C. H., K. C. Tsai, L. L. Chung, and C. H. Yeh (2003). Reconnaissance Report on the 31 March 2002 Earthquake on the East Coast of Taiwan, Earthquake Spectra 19(3), 531-556.
[60]Lermo, J. and F. J. Chavez-Garcia (1993). Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am. 83(5), 1574–1594.
[61]Matthews, M. V., W. L. Ellsworth, and P. A. Reasenberg (2002). A Brownian model for recurrent earthquakes, Bull. Seismol. Soc. Am. 92, 2233- 2250, doi.10.1785/0120010267.
[62]McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis, U.S. Geological Survey, Open-File Report 76-67.
[63]McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop, Bull. Seismol. Soc. Am. 85, 1275–1284.
[64]McGuire, R. K. (2001). Deterministic vs. probabilistic earthquake hazards and risks, Soil Dynam. Earthquake Eng. 21, 377–384.
[65]McGuire, R. K. (2004). Seismic Hazard and Risk Analysis, Earthquake Engineering Monograph. MNO-10. Oakland, CA. EERI.
[66]Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi (1996). Mavelet toolbox – User’s guide, The Math Work, Inc., Natick, MA.
[67]Mosca I., R. Console, and G. D''Addezio (2012). Renewal models of seismic recurrence applied to paleoseismological and historical observations, Tectonophysics 564-565, 54-67, doi:10.1016/j.tecto.2012.06.028.
[68]Nishenko, S. P., and R. Buland (1987). A generic recurrence interval distribution for earthquake forecasting, Bull. Seismol. Soc. Am. 77, 1382-1399.
[69]NUREG/CR-6372 (1997). Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Senior Seismic Hazard Analysis Committee (SSHAC) for the U.S. Nuclear Regulatory Commission, Washington DC.
[70]Ogata, Y. (1999). Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes, J. Geophys. Res. 104(B8), 17995-18014, doi:10.1029/1999JB900115.
[71]Panthi, A., Shanker, D., Singh, H.N., Kumar, A. and Paudyal, H. (2011). Time-predictable model applicability for earthquake occurrence in northeast India and vicinity, Natural Hazards and Earth System Sciences 11(3), 993-1002.
[72]Parsons, T. (2005). Significance of stress transfer in time-dependent earthquake probability calculations, J. Geophys. Res. 110, doi:10.1029/2004JB003190.
[73]Parsons, T. (2006). M≥7.0 earthquake recurrence on the San Andreas fault from a stress renewal model, J. Geophys. Res. 111, doi:10.1029/2006JB004415.
[74]Parsons, T. and E. L. Geist (2009). Is there basis for preferring characteristic earthquakes over Gutenberg-Richter distributions on individual faults in probabilistic earthquake forecasting?, Bull. Seismol. Soc. Am. 99, 2012-2019, doi:10.1785/0120080069.
[75]Pacific Gas and Electric Company (PG&E) (2015). Seismic Source Characterization for the Diablo Canyon Power Plant, San Luis Obispo County, California, Report on the results of a SSHAC level 3 study Rev. A. Available online at http://www.pge.com/dcpp-ltsp.
[76]Power, M., B. Chiou, N. Abrahamson, Y. Bozorgnia, T. Shantz, and C. Roblee, (2008). An Overview of the NGA Project, Earthq. Spectra 24, 3-21.
[77]Reid, H. F. (1911). The elastic-rebound theory of earthquakes. Univ. Calif. Publ, Bulletin of the Department of Geology, 6(19).
[78]Regulatory Guide 1.165 (1997). Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion, U.S. Nuclear Regulatory Commission, Washington DC.
[79]Regulatory Guide 1.208 (2007). A Performance-Based Approach to Define Site-Specific Earthquake Ground Motion, U.S. Nuclear Regulatory Commission, Washington DC.
[80]Schwartz, D. P. and K. J. Coppersmith (1984). Fault Behavior and Characteristic Earthquakes. Examples From the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89(B7), 5681-5698, doi:10.1029/JB089iB07p05681.
[81]Shyu, J. B. H., Y. R. Chuang, Y. L. Chen, Y. R. Lee, and C. T. Cheng (2016). A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan, Terr. Atmos. Ocean. Sci. 27(3), 311-323, doi:10.3319/TAO.2015.11.27.02(TEM).
[82]Shimazaki, K. and Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes, Geophysical Research Letters 7(4), 279-282.
[83]Shin, T. C. and T. L. Teng (2001). An overview of the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91(5), 895-913.
[84]Sokolov, V., K. L. Wen, J. Miksat, F. Wenzel, and C. T. Chen (2009). Analysis of Taipei Basin response on earthquakes of various depth and location using empirical data, Terr. Atmos. Ocean. Sci. 20(5), 687–702.
[85]Sykes, L. R. and W. Menke (2006). Repeat Times of Large Earthquakes. Implications for Earthquake Mechanics and Long-Term Prediction, Bull. Seismol. Soc. Am. 96(5), 1569-1596, doi:10.1785/0120050083.
[86]Teng, L. S., C. T. Lee, C. H. Peng, W. F. Chen, and C. J. Chu (2001). Origin and Geological Evolution of the Taipei Basin. Northern Taiwan, Western. Pac. Earth Sci. 1, 115–142.
[87]Vautard, R. and M. Ghil, 1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D: Nonlinear Phenomena 35(3), 395-424.
[88]Vautard, R., P. Yiou, and M. Ghil (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D: Nonlinear Phenomena 58(1), 95-126.
[89]Wang, C. Y., Y. H. Lee, M. L. Ger, and Y. L. Chen (2004). Investigating subsurface structures and P- and S-wave velocities in the Taipei Basin, Terr. Atmos. Ocean. Sci. 15, 609-627.
[90]Wells, D. L. and K. J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84, 974-1002.
[91]Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am. 70(4), 1337-1346.
[92]Wen, K. L. and H. Y. Peng (1998). Site effect analysis in the Taipei Basin results from TSMIP network data, Terr. Atmos. Ocean. Sci. 9(4), 691–704.
[93]Wen, K. L., T. M. Chang, C. M. Lin, and H. J. Chiang (2006). Identification of nonlinear site response using the H/V spectral ratio method, Terr. Atmos. Ocean. Sci. 17(3), 533-546.
[94]Wesnousk, S. G. and C. H. Scholz (1983). Earthquake Frequency Distribution and the Mechanics of Faulting, J. Geophys. Res. 88(B11), 9331-9340, doi: 10.1029/JB088iB11p09331.
[95]Wesnousky, S. G. (1994). The Gutenburg Richter or Characteristic Earthquake Distribution, which is it?, Bull. Seismol. Soc. Am. 84, 1940-1959.
[96]Working Group on California Earthquake Probabilities (WGCEP) (1995). Seismic hazards in Southern California: probable earthquake, 1994 to 2024, Bull. Seismol. Soc. Am. 85, 379-439.
[97]Working Group on California Earthquake Probabilities (WGCEP) (1999). Earthquake probabilities in the San Francisco Bay Region: 2000-2030 - A Summary of findings, U.S. Geological Survey, Open-File Report 99-517.
[98]Working Group on California Earthquake Probabilities (WGCEP) (2003). Earthquake Probabilities in the San Francisco Bay Region: 2002-2031. U.S. Geological Survey, Open-File Report 03-214, 234 pp.
[99]Working Group on California Earthquake Probabilities (WGCEP) (2007). The Uniform California earthquake rupture forecast, version 2 (UCERF x2). U.S. Geological Survey, Open-File Report 07-1437.
[100]Yamazaki, F. and M. A. Ansary (1997). Horizontal-to-vrtical spectrum ratio of earthquake ground motion for site characterization, Earthquke Engineering and Structural Dynamics 26, 671-689.
[101]Yeh, C. S., T. J. Teng, J. F. Chai and W. I. Liao (2001). Seismic Microzonation and Design Response Spectrum in Taipei Basin, Research Report of Architecture and Building Research Institute, Ministry of the Interior, Taiwan.(in Chinaese)
[102]Yen, I. C., W. S. Chen, C. C. B. Yang, N. W. Huang, and C. W. Lin (2008). Paleoseismology of the Rueisuei Segment of the Longitudinal Valley Fault, Eastern Taiwan, Bull. Seismol. Soc. Am. 98(4), 1737-1749, doi:10.1785/0120070113.
[103]Youngs, R. R. and K. J. Coppermith (1985). Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bull. Seismol. Soc. Am. 75(4), 939-964.
[104]Yang, K. M., S. T. Huang, J. C. Wu, H. H. Ting, W. W. Mei, M. Lee, H. H. Hsu, and C. J. Lee (2007). 3D geometry of the Chelungpu thrust system in Central Taiwan: Its implications for active tectonics, Terr. Atmos. Ocean. Sci. 18(2), 143-181.
[105]Yu, S. B., H. Y. Chen, and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics 274(1), 41–59, doi:10.1016/S0040-1951(96)00297-1.
[106]Yue, L. F., J. Suppe, and J. H. Hung (2005). Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw= 7.6), Journal of Structural Geology 27(11), 2058-2083.
[107]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2013。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(1/4)。經濟部中央地質調查所期末報告書,共413頁。
[108]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2014。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(2/4)。經濟部中央地質調查所期末報告書,共461頁。
[109]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2015。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(3/4)。經濟部中央地質調查所期末報告書,共430頁。
[110]胡植慶、劉啟清、景國恩、鄭錦桐,2016。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(4/4)。經濟部中央地質調查所期末報告書,共439頁。
[111]溫國樑、簡文郁、張毓文,2005。最具潛勢及歷史災害地震之強地動模擬,國家地震工程研究中心(NCREE-05-032)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top