|
[1]Abrahamson, N. A. (2006). Seismic Hazard Assessment: Problems with Current Practice and Future Developments, Proceedings, First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, 17 pp. [2]Abrahamson, N. A., W. J. Silva, and R. Kamai (2014). Summary of the ASK14 Ground Motion Relation for Active Crustal Regions, Earthq. Spectra 30, 1025-1055, doi:http.//dx.doi.org/10.1193/070913EQS198M. [3]Akinci, A., D. Perkins, A. M. Lombardi, and R. Basili (2010). Uncertainties in probability of occurrence of strong earthquakes for fault sources in the Central Apennines, Italy. J. Seismol. 14(1), 95-117, doi:10.1007/s10950-008-9142-y. [4]Alonso, F. J., J. M. Del Castillo, and P. Pintado (2005). Application of singular spectrum analysis to the smoothing of raw kinematic signals, Journal of Biomechanics 38(5), 1085-1092. [5]Angelier, J., E. Barrier, and H. T. Chu (1986). Plate collision and paleostress trajectories in a fold-thrustbelt : the foothills of Taiwan, Tectonophysics 125, 161-178. [6]Atakan, K., V. Midzi, B. M. Toiran, K. Vanneste, T. Camelbeeck, and M. Meghraoui (2000). Seismic hazard in regions of present day low seismic activity uncertainties in the paleoseismic investigations along the Bree Fault Scarp (Roer Graben, Belgium), Soil Dyn. Earthq. Eng. 20(5-8), 415-427, doi:10.1016/s0267-7261(00)00081-6. [7]Boe, P. D. and J. C. Golinval (2003). Principal Component Analysis of a Piezosensor Array for Damage Localization, Structural Health Monitoring 2(2), 137-144. [8]Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthq. Spectra 30, 1057-1085, doi:http://dx.doi.org/10.1193/070113EQS184M. [9]Bozorgnia, Y., N. A. Abrahamson, L. A. Atik, T. D. Ancheta, G. M. Atkinson, J. W. Baker, A. Baltay, D. M. Boore, K. W. Campbell, B. S.-J. Chiou, R. Darragh, S. Day, J. Donahue, R. W. Graves, N. Gregor, T. Hanks, I. M. Idriss, R. Kamai, T. Kishida, A. Kottke, S. A. Mahin, S. Rezaeian, B. Rowshandel, E. Seyhan, S. Shahi, T. Shantz, W. Silva, P. Spudich, J. P. Stewart, J. Watson-Lamprey, K. Wooddell, and R. Youngs (2014). NGA-West2 Research Project, Earthq. Spectra 30(3), 973-987, doi: 10.1193/072113EQS209M. [10]Bozzo, E., Carniel, R., and Fasino, D. (2010). Relationship between singular spectrum analysis and Fourier analysis. Theory and application to the monitoring of volcanic activity, Computers and Mathematics with Applications 60(3), 812–820. [11]Campbell, K. W., and Y. Bozorgnia (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra, Earthq. Spectra 30, 1087-1115, doi: http://dx.doi.org/10.1193/062913EQS175M. [12]Castagnoli, G. C., C. Taricco, and S. Alessio (2005). Isotopic record in a marine shallow-water core. imprint of solar centennial cycles in the past 2 millennia, Advances in Space Research 35, 504-508. [13]Chang, Y. W., W. Y. Jean, C. H. Loh, and K. L. Wen (2007). The Application of Time-Predictable Characteristic Earthquake Model for Evaluation of Design Earthquake in Taiwan, Proceedings of 10th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP10), Japan, No.72. [14]Chang, Y. W., W. Y. Jean, J. F. Chai, C. H. Loh, and K. L. Wen (2008). The Microzonation of Seismic Design Earthquake for Taipei Basin, Proceedings of 14th World Conference on Earthquake Engineering, China Beijing, NO. 07-145. [15]Chang, Y. W., W. Y. Jean, and S. B. Chiou (2010). Study on Design Earthquakes for Kinmen, Matsu and Penhu Areas, Report of National Center for Research on Earthquake Engineering (NCREE), NCREE-10-016, 76 pp. (in Chinese) [16]Chiou, B. S.-J., and R. R. Youngs (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthq. Spectra 30, 1117-1153, doi: http://dx.doi.org/10.1193/072813EQS219M. [17]Chen, W. S., Y. G. Chen, T. K. Liu, N. W. Huang, C. C. Lin, S. H. Sung, and K. J. Lee (2000). Characteristics of the Chi-Chi earthquake ruptures, Central Geological Survey Special Publication 12, 139–154. [18]Chen, W. S., Y. G. Chen, H. C. Chang, Y. H. Lee, K. J. Lee, L. S. Lee, D. J. Ponti, and C. Prentice, (2001). Paleoseismology of the Chelungpu fault, Central Taiwan, Proceedings of International Symposium on Earthquake and Active Tectonics (iSEAT), Taipei, Taiwan. [19]Chen, W. S., Y. G. Chen, R.C. Shih, , T. K. Liu, N.W. Huang , C.C. Lin , S. H.Sung, and K. J. Lee (2003). Thrust-related river terrace development in relation to the 1999 Chi-Chi earthquake ruptures, Western Foothills, central Taiwan, J. Asian Ear. Sci. 21, 473-480. [20]Chen, Y. G., Y. W. Chen, W. S. Chen, J. F. Zhang, H. Zhao, L. P. Zhou, and S. H. Li (2003). Preliminary results of long-term slip rates of 1999 earthquake fault by luminescence and radiocarbon dating, Quat. Sci. Rev 22 10–13, 1213–1221. [21]Chen, W. S., K. J. Lee, L. S. Lee, D. J. Ponti, C. Prentice, Y. G. Chen, H. C. Chang, and Y. H. Lee (2004). Paleoseismology of the Chelungpu fault during the past 1900 years, Quaternary International 115-116 167-176, doi:10.1016/s1040-6182(03)00105-8. [22]Chen, W. S., C. C. Yang, I. C. Yen, L. S. Lee, K. J. Lee, H. C. Yang, H. C. Chang, Y. Ota, C. W., Lin, W. H. Lin, T. S. Shih, and S. T. Lu (2007). Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan. Evidence from the Chushan excavation site, Bull. Seismol. Soc. Am. 97(1), 1-13, doi:10.1785/0120050161. [23]Cheng, S. N., Y. T. Yeh, M. T. Hsu, and T. C. Shin (1999). Atlas of Ten Disastrous Earthquakes in Taiwan, Central Weather Bureau, Ministry of Transportation and Communication, 290pp. (in Chinese). [24]Campbell, K., and P. Thenhaus (2002). Seismic Hazard Analysis, Earthquake Engineering Handbook Chapter 8: CRC Press. [25]Coifman, R. R. and M. V. Wickerhauser (1992). Entropy-based algorithms for best basis selection, IEEE Transactions on Information Theory 38(2), 713-718. [26]Cornell, C. A (1968). Engineering Seismic Risk Analysis, Bull. Seismol. Soc. Am. 58(5), 1583-1606. [27]Cornell, C. A. and S. R. Winterstein (1988). Temporal and magnitude dependence in earthquake recurrence models, Bull. Seismol. Soc. Am. 78(4), 1522-1537. [28]Cramer, C. H., M. D. Petersen, T. Cao, T. R. Toppozada, and M. Reichle (2000). A time-dependent probabilistic seismic hazard model for California, Bull. Seismol. Soc. Am. 90, 1-21, doi:10.1785/0119980087. [29]Der Kiureghian, A. and A. H-S Ang (1977). A Fault-Rupture Model for Seismic Risk Analysis, Bull. Seismol. Soc. Am. 67(4), 1173-1194. [30]Earthquake Research Committee (ERC) (2005). National Seismic Hazard Maps for Japan, Headquarters for Earthquake Research Promotion. Available from World Wide Web. http://www.jishin.go.jp/main/index-e.html, 162 pp. [31]Ellsworth, W. L., M. V. Matthews, R. M. Nadeau, S. P., Nishenko, P. A. Reasenberg, and R. W. Simpson (1999). A Physically-Based Earthquake Recurrence Model for Estimation of Long-Term Earthquake Probabilities, U. S. Geological Survey Open-File Report 99-522, 23 pp., http://pubs.usgs.gov/of/1999/0522/. [32]Field, E. H., G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordan, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon, and Y. Zeng (2015). Long‐Term Time‐Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3), Bull. Seismol. Soc. Am. 105(2A), 511-543, doi:10.1785/0120140093. [33]Fujiwara, H., N. Morikawa, Y. Ishikawa, T. Okumura, J. Miyakoshi, N. Nojima, and Y. Fukushima (2009). Statistical Comparison of National Probabilistic Seismic Hazard Maps and Frequency of Recorded JMA Seismic Intensities from the K-NET Strong-motion Observation Network in Japan during 1997-2006, Seismol. Res. Lett. 80(3), 458-464, doi:10.1785/gssrl.80.3.458. [34]Garcia-Aristizabal, A., W. Marzocchi, and E. Fujita (2012). A Brownian model for recurrent volcanic eruptions an application to Miyakejima volcano (Japan), Bull. Volcanol. 74(2), 545-558, doi:10.1007/s00445-011-0542-4. [35]Golyandina, N., V. Nekrutkin, and A. Zhigljavsky (2001). Analysis of time series structure SSA and related techniques, Boca Raton Fla., Chapman and Hall/CRC. [36]González, Á., J. B. Gómez, and A. F. Pacheco (2006). Updating seismic hazard at Parkfield, J. Seismol. 10(2), 131-135, doi:10.1007/s10950-005-9005-8. [37]Gupta, I. D. (2007). Probabilistic seismic hazard analysis method for mapping of spectral amplitudes and other design-specific quantities to estimate the earthquake effects on man-made structures, ISET J. Earthq. Tech. 44(1), 127-167. [38]Gutenberg, B. and C. F. Richter (1944). Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188. [39]Gülerce, Z. and M. Vakilinezhad (2015). Effect of Seismic Source Model Parameters on the Probabilistic Seismic‐Hazard Assessment Results: A Case Study for the North Anatolian Fault Zone, Bull. Seism. Soc. Am. 105(5), 2808-2822. [40]http://cgsweb.moeacgs.gov.tw/ [41]Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys Res. 84, 2348–2350, doi:10.1029/JB084iB05p02348. [42]Hong, L. L. and S. W. Guo (1995). Nonstationary Poisson Model for Earthquake Occurrences, Bull. Seismol. Soc. Am. 85(3), 814-824. [43]Hung, J. H., D. V. Wiltschko, H. C. Lin, J. B. Hickman, P. Fang, and Y. Bock (1999). Structure and motion of the southwestern Taiwan fold and thrust belt, Terr. Atmos. Ocean. Sci. 10(3), 543–568. [44]Huang, J. Y. (2009). Using Microtremor Measurement to Study the Site Effect in Taiwan Area, M.Sc. Thesis, National Central University, Taiwan, 204 pp (in Chinese). [83] [45]Huang, Norden E., Z. Shen, R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H.Liu. (1998). The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary time Series Analysis, Proceedings of the Royal Society of London 454, 903-995. [46]Huang, W. G., B. S. Huang, J. H. Wang, K. C. Chen, K. L. Wen, C. C. Liu, S. H. Tsao, Y. C. Hsieh, and C. H. Chen (2010). Seismic observation in themetropolitan Taipei from the downhole network, Terr. Atmos. Ocean. Sci. 21, 615–625. [47]Huang, Y. L., B. S. Huang, K. L. Wen, Y. C. Lai, and Y. R. Chen (2010). Investigation for strong ground shaking across the Taipei Basin during the Mw 7.0 eastern Taiwan offshore earthquake of 31 March 2002, Terr. Atmos. Ocean. Sci. 21, 485–493. [48]Jemwa, G. T. and C. Aldrich. (2006). Classification of process dynamics with Monte Carlo singular spectrum analysis, Computers and Chemical Engineering 30, 816–831. [49]Jolliffe, I. T. (2002). Principal Component Analysis, 2nd ed., Springer. [50]Jean, W. Y., Y. W. Chang, C. H. Loh, and K. L. Wen (2006). The probability seismic analysis and the scenario earthquake, Proceedings of Conferences Commemoration of 100th Anniversary of the 1906 Meishan Earthquake, Taiwan. (in Chinese) [51]Komatitsch, D., Q. Liu, J. Tromp, P. Suss, C. Stidham, and J. H. Shaw (2004). Simulations of ground motion in the Los Angeles basin based upon the spectral-element method, Bull. Seism. Soc. Am. 94, 187–206. [52]Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K. W. Kuo (2012). Site Classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT, Engineering Geology 129-130, 68-75. [53]Kuo, C. H., K. L. Wen, C.M. Lin, and J. Y. Huang (2014). Estimating Seismic Site Conditions Using HVSR of Microtremor. Proceedings of The 12th National Conference on Structural Engineering/The Second National Conference on Earthquake Engineering 1101, Kaohsiung, Taiwan. [54]Lee, S. J., H. W. Chen, and B. S. Huang (2008). Simulations of strong ground motion and 3D amplification effect in the Taipei Basin by using a composite grid finite-difference method, Bull. seism. Soc. Am. 98(3), 1229–1242 [55]Lin, C. W., H. C. Chang, S. T. Lu, T. S. Shih, and W. J. Huang (2000). An introduction of the active faults of Taiwan (Second edition), Special Publication of Central Geological Survey 13. (in Chinese) [56]Lin, C. W., S. T., Lu, and W. S. Chen, (2012). Active Fault Map of Taiwan: An Explanatory Text (2012 Edition), Special Publication of the Central Geological Survey 26, 30pp. (in Chinese) [57]Liu, K. S., T. C. Shin, and Y. B. Tsai (1999). A free-field strong motion network in Taiwan TSMIP, Terr. Atmos. Ocean. Sci. 10, 377–396. [58]Loh, C. H., Z. K. Lee, T. C. Wu, and S. Y. Peng (2000). Ground motion characteristics of the Chi‐Chi earthquake of 21 September 1999, Soil Dyn. Earthq. Eng. 29(6), 867-897. [59]Loh, C. H., K. C. Tsai, L. L. Chung, and C. H. Yeh (2003). Reconnaissance Report on the 31 March 2002 Earthquake on the East Coast of Taiwan, Earthquake Spectra 19(3), 531-556. [60]Lermo, J. and F. J. Chavez-Garcia (1993). Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am. 83(5), 1574–1594. [61]Matthews, M. V., W. L. Ellsworth, and P. A. Reasenberg (2002). A Brownian model for recurrent earthquakes, Bull. Seismol. Soc. Am. 92, 2233- 2250, doi.10.1785/0120010267. [62]McGuire, R. K. (1976). FORTRAN computer program for seismic risk analysis, U.S. Geological Survey, Open-File Report 76-67. [63]McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop, Bull. Seismol. Soc. Am. 85, 1275–1284. [64]McGuire, R. K. (2001). Deterministic vs. probabilistic earthquake hazards and risks, Soil Dynam. Earthquake Eng. 21, 377–384. [65]McGuire, R. K. (2004). Seismic Hazard and Risk Analysis, Earthquake Engineering Monograph. MNO-10. Oakland, CA. EERI. [66]Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi (1996). Mavelet toolbox – User’s guide, The Math Work, Inc., Natick, MA. [67]Mosca I., R. Console, and G. D''Addezio (2012). Renewal models of seismic recurrence applied to paleoseismological and historical observations, Tectonophysics 564-565, 54-67, doi:10.1016/j.tecto.2012.06.028. [68]Nishenko, S. P., and R. Buland (1987). A generic recurrence interval distribution for earthquake forecasting, Bull. Seismol. Soc. Am. 77, 1382-1399. [69]NUREG/CR-6372 (1997). Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Senior Seismic Hazard Analysis Committee (SSHAC) for the U.S. Nuclear Regulatory Commission, Washington DC. [70]Ogata, Y. (1999). Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes, J. Geophys. Res. 104(B8), 17995-18014, doi:10.1029/1999JB900115. [71]Panthi, A., Shanker, D., Singh, H.N., Kumar, A. and Paudyal, H. (2011). Time-predictable model applicability for earthquake occurrence in northeast India and vicinity, Natural Hazards and Earth System Sciences 11(3), 993-1002. [72]Parsons, T. (2005). Significance of stress transfer in time-dependent earthquake probability calculations, J. Geophys. Res. 110, doi:10.1029/2004JB003190. [73]Parsons, T. (2006). M≥7.0 earthquake recurrence on the San Andreas fault from a stress renewal model, J. Geophys. Res. 111, doi:10.1029/2006JB004415. [74]Parsons, T. and E. L. Geist (2009). Is there basis for preferring characteristic earthquakes over Gutenberg-Richter distributions on individual faults in probabilistic earthquake forecasting?, Bull. Seismol. Soc. Am. 99, 2012-2019, doi:10.1785/0120080069. [75]Pacific Gas and Electric Company (PG&E) (2015). Seismic Source Characterization for the Diablo Canyon Power Plant, San Luis Obispo County, California, Report on the results of a SSHAC level 3 study Rev. A. Available online at http://www.pge.com/dcpp-ltsp. [76]Power, M., B. Chiou, N. Abrahamson, Y. Bozorgnia, T. Shantz, and C. Roblee, (2008). An Overview of the NGA Project, Earthq. Spectra 24, 3-21. [77]Reid, H. F. (1911). The elastic-rebound theory of earthquakes. Univ. Calif. Publ, Bulletin of the Department of Geology, 6(19). [78]Regulatory Guide 1.165 (1997). Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion, U.S. Nuclear Regulatory Commission, Washington DC. [79]Regulatory Guide 1.208 (2007). A Performance-Based Approach to Define Site-Specific Earthquake Ground Motion, U.S. Nuclear Regulatory Commission, Washington DC. [80]Schwartz, D. P. and K. J. Coppersmith (1984). Fault Behavior and Characteristic Earthquakes. Examples From the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89(B7), 5681-5698, doi:10.1029/JB089iB07p05681. [81]Shyu, J. B. H., Y. R. Chuang, Y. L. Chen, Y. R. Lee, and C. T. Cheng (2016). A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan, Terr. Atmos. Ocean. Sci. 27(3), 311-323, doi:10.3319/TAO.2015.11.27.02(TEM). [82]Shimazaki, K. and Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes, Geophysical Research Letters 7(4), 279-282. [83]Shin, T. C. and T. L. Teng (2001). An overview of the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91(5), 895-913. [84]Sokolov, V., K. L. Wen, J. Miksat, F. Wenzel, and C. T. Chen (2009). Analysis of Taipei Basin response on earthquakes of various depth and location using empirical data, Terr. Atmos. Ocean. Sci. 20(5), 687–702. [85]Sykes, L. R. and W. Menke (2006). Repeat Times of Large Earthquakes. Implications for Earthquake Mechanics and Long-Term Prediction, Bull. Seismol. Soc. Am. 96(5), 1569-1596, doi:10.1785/0120050083. [86]Teng, L. S., C. T. Lee, C. H. Peng, W. F. Chen, and C. J. Chu (2001). Origin and Geological Evolution of the Taipei Basin. Northern Taiwan, Western. Pac. Earth Sci. 1, 115–142. [87]Vautard, R. and M. Ghil, 1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D: Nonlinear Phenomena 35(3), 395-424. [88]Vautard, R., P. Yiou, and M. Ghil (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D: Nonlinear Phenomena 58(1), 95-126. [89]Wang, C. Y., Y. H. Lee, M. L. Ger, and Y. L. Chen (2004). Investigating subsurface structures and P- and S-wave velocities in the Taipei Basin, Terr. Atmos. Ocean. Sci. 15, 609-627. [90]Wells, D. L. and K. J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84, 974-1002. [91]Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am. 70(4), 1337-1346. [92]Wen, K. L. and H. Y. Peng (1998). Site effect analysis in the Taipei Basin results from TSMIP network data, Terr. Atmos. Ocean. Sci. 9(4), 691–704. [93]Wen, K. L., T. M. Chang, C. M. Lin, and H. J. Chiang (2006). Identification of nonlinear site response using the H/V spectral ratio method, Terr. Atmos. Ocean. Sci. 17(3), 533-546. [94]Wesnousk, S. G. and C. H. Scholz (1983). Earthquake Frequency Distribution and the Mechanics of Faulting, J. Geophys. Res. 88(B11), 9331-9340, doi: 10.1029/JB088iB11p09331. [95]Wesnousky, S. G. (1994). The Gutenburg Richter or Characteristic Earthquake Distribution, which is it?, Bull. Seismol. Soc. Am. 84, 1940-1959. [96]Working Group on California Earthquake Probabilities (WGCEP) (1995). Seismic hazards in Southern California: probable earthquake, 1994 to 2024, Bull. Seismol. Soc. Am. 85, 379-439. [97]Working Group on California Earthquake Probabilities (WGCEP) (1999). Earthquake probabilities in the San Francisco Bay Region: 2000-2030 - A Summary of findings, U.S. Geological Survey, Open-File Report 99-517. [98]Working Group on California Earthquake Probabilities (WGCEP) (2003). Earthquake Probabilities in the San Francisco Bay Region: 2002-2031. U.S. Geological Survey, Open-File Report 03-214, 234 pp. [99]Working Group on California Earthquake Probabilities (WGCEP) (2007). The Uniform California earthquake rupture forecast, version 2 (UCERF x2). U.S. Geological Survey, Open-File Report 07-1437. [100]Yamazaki, F. and M. A. Ansary (1997). Horizontal-to-vrtical spectrum ratio of earthquake ground motion for site characterization, Earthquke Engineering and Structural Dynamics 26, 671-689. [101]Yeh, C. S., T. J. Teng, J. F. Chai and W. I. Liao (2001). Seismic Microzonation and Design Response Spectrum in Taipei Basin, Research Report of Architecture and Building Research Institute, Ministry of the Interior, Taiwan.(in Chinaese) [102]Yen, I. C., W. S. Chen, C. C. B. Yang, N. W. Huang, and C. W. Lin (2008). Paleoseismology of the Rueisuei Segment of the Longitudinal Valley Fault, Eastern Taiwan, Bull. Seismol. Soc. Am. 98(4), 1737-1749, doi:10.1785/0120070113. [103]Youngs, R. R. and K. J. Coppermith (1985). Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bull. Seismol. Soc. Am. 75(4), 939-964. [104]Yang, K. M., S. T. Huang, J. C. Wu, H. H. Ting, W. W. Mei, M. Lee, H. H. Hsu, and C. J. Lee (2007). 3D geometry of the Chelungpu thrust system in Central Taiwan: Its implications for active tectonics, Terr. Atmos. Ocean. Sci. 18(2), 143-181. [105]Yu, S. B., H. Y. Chen, and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics 274(1), 41–59, doi:10.1016/S0040-1951(96)00297-1. [106]Yue, L. F., J. Suppe, and J. H. Hung (2005). Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw= 7.6), Journal of Structural Geology 27(11), 2058-2083. [107]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2013。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(1/4)。經濟部中央地質調查所期末報告書,共413頁。 [108]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2014。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(2/4)。經濟部中央地質調查所期末報告書,共461頁。 [109]胡植慶、劉啟清、楊燦堯、景國恩、鄭錦桐,2015。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(3/4)。經濟部中央地質調查所期末報告書,共430頁。 [110]胡植慶、劉啟清、景國恩、鄭錦桐,2016。斷層活動性觀測研究第三階段:斷層整合性觀測與潛勢分析(4/4)。經濟部中央地質調查所期末報告書,共439頁。 [111]溫國樑、簡文郁、張毓文,2005。最具潛勢及歷史災害地震之強地動模擬,國家地震工程研究中心(NCREE-05-032)。
|