跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/19 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳語庭
研究生(外文):Yu-Ting Chen
論文名稱:結合空間–時間統計降尺度模式和降雨逕流模式評估時逕流
論文名稱(外文):Integration of spatio-temporal statistical downscaling and rainfall-runoff modeling for estimating hourly streamflow
指導教授:林國峰林國峰引用關係
指導教授(外文):Gwo-Fong Lin
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:氣候變遷溫度逕流統計降尺度K最近鄰居法基因演算法HBV模式
外文關鍵詞:Climate changeTemperatureStreamflowk-nearest neighbor methodHBV model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:436
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣環流模式配合降尺度獲得的高解析度雨量和溫度資料是評估氣候變遷對降雨逕流衝擊的重要一環,然而現存的溫度降尺度模式未考慮跨日關係與日夜循環,且降雨逕流模式鮮少評估小時尺度。因此,本研究提出同時考慮跨日關係及日夜循環的統計降尺度模式和降雨逕流模式,評估氣候變遷對小時逕流的衝擊。
首先本研究提出溫度降尺度模式可分為空間和時間降尺度階段。空間降尺度階段,使用K最近鄰居法(k-nearest neighbor method, KNN)建構大尺度大氣因子與溫度的關係,獲得測站尺度日溫度序列。時間降尺度階段使用KNN結合基因演算法(genetic algorithm, GA),同時考慮跨日關係及日夜循環,由日溫度降尺度至小時溫度。進而將繁衍的溫度和雨量輸入HBV模式(Hydrologiska Byråns Vattenbalansavdelning)模擬日和小時的逕流量,最後評估氣候變遷對逕流的衝擊。本研究將提出之模式應用於臺灣石門水庫流域,模式建立使用大尺度大氣因子為NCEP/NCAR (NCEP/NCAR reanalysis data)再分析資料,及測站尺度日與時觀測資料。未來情境映射使用BCM2.0模式中的A2、A1B及B1情境之中期(2046-2065)和長期(2081-2100)資料。
結果顯示,本研究提出之統計降尺度模式能有效保有日和小時溫度的統計特性,並保持跨日關係與日夜循環,HBV模式可準確模擬小時的逕流。未來情境映射時,所有情境的溫度會增加,逕流會減少。本研究對溫度和降雨逕流評估結果,可幫助決策者進行水資源系統規劃及管理。
Downscaling is used to translate the general circulation model outputs to a finer spatiotemporal resolution rainfall and temperature data, which is essential for assessing hydrological impacts of climate change. However, existing downscaling models for hourly temperature are unable to consider the inter-daily connection and the diurnal cycle and consider the hourly scale. Besides, existing rainfall-runoff models have less attention on hourly streamflow. To address this problem, a spatiotemporal downscaling model is proposed which is capable of reproducing the inter-daily connection, the diurnal cycle, and the statistics on daily and hourly scales. Using the results of rainfall and temperature as input to the rainfall-runoff model, the hydrological impacts of climate change on hourly streamflow are assessd.
The proposed downscaling model consists of two steps, the spatial downscaling and temporal downscaling. The spatial downscaling is applied first to obtain the relationship between large-scale weather factors and daily temperature at station scale using the k-nearest neighbor method. Then, the hourly downscaling of daily temperature is conducted in the second step using the k-nearest neighbor method with the genetic algorithm and consideration of the inter-daily connection and the diurnal cycle. The large-scale datasets, which are obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data and the Bergen Climate Model version 2 (BCM2.0) outputs, and the local temperature data are analyzed to assess the impacts of climate change on temperature. After rainfall and temperature projections, the HBV model are applied to predict the future streamflow of Shihmen reservoir basin (Taiwan) under the A2, A1B and B1 scenarios of the BCM2.0 for the periods 2046-2065 and 2081-2100.
The results show that the proposed model can accurately reproduce the local temperature and its statistics on daily and hourly scales. The change trend of the future streamflow under the impacts of climate change is presented and discussed. To conclude, the results demonstrate that the proposed model is a powerful tool for predicting streamflow. The future changes of temperature and streamflow statistics are obtained which will help decision makers in planning and management of water resources systems.
口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文架構 6
第二章 研究區域與資料 7
2.1 研究區域概述 7
2.2 研究區域資料 8
2.3 再分析資料 11
2.4 未來情境資料 13
第三章 研究方法 17
3.1 KNN 17
3.2 GAKNN 20
3.3 GAKNN-DH 22
3.3.1 考慮跨日關係之修正 22
3.3.2 考慮日夜循環之修正 23
3.4 HBV model 25
第四章 模式建立與應用 28
4.1 研究流程 28
4.2 統計降尺度階段 29
4.2.1 空間降尺度階段 29
4.2.2 時間降尺度階段 29
4.3 降雨逕流階段 30
4.3.1 日逕流階段 30
4.3.2 小時逕流階段 30
4.3.3 交替驗證 30
4.4 評鑑指標 32
第五章 結果與討論 35
5.1 空間降尺度 35
5.1.1 因子篩選 35
5.1.2 各雨量站降尺度結果 38
5.1.4 氣象站間相關性 41
5.2 時間降尺度 42
5.2.1 GAKNN 42
5.2.2 考慮跨日關係及日夜循環 46
5.3 降雨逕流 51
5.3.1 日逕流 51
5.3.2 小時逕流 54
5.3 未來情境映射 58
5.3.1 未來年變化 59
5.3.2 未來日變化 62
5.4.3 未來時變化 66
第六章 結論與建議 71
6.1 結論 71
6.2 建議 72
參考文獻 73
附錄A 83
附錄B 90
附錄C 93
1.Arda Şorman, A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü. and Akyürek, Z., 2009. Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrological Processes. 23, 1031–1040.
2.Anandhi,A., Srinivas, V.V., Nagesh Kumar, D. and Ravi, S.N., 2009. Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology. 29, 583–603.
3.Abustan, I., Sulaiman, A.H., Wahid, N.A. and Baharudin, F., 2008. Determination of rainfall-runoff characteristics in an urban area: Sungai Kerayong catchment, Kuala Lumpur. In: Proceeding of 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
4.Hewitson, B.C. and Crane, R.G., 2005. Consensus between gcm climate change projections with empirical downscaling: precipitation downscaling over south africa. International Journal of Climatology. 26, 1315–1337.
5.Belli, A. and Haberlandt, U., 2012. Stochastic precipitation modeling using circulation patterns to analyze climate impact on floods. Adv. Geosci. 32, 93–97.
6.Bergström, S., 1975. The development of a snow routine for the HBV -2 model. Nordic Hydrology. 6, 73 - 92.
7.Beuchat, X., Schaefli, B., Soutter, M. and Mermoud, A., 2011. Toward a robust method for subdaily rainfall downscaling from daily data. Water Resources Research. 47 (9), W09524.
8.Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrologic Science Bulletin. 24(1):43-69.
9.Buishand, T.A. and Brandsma, T., 2001. Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest neighbor resampling. Water Resources Research. 37 (11), 2761–2776.
10.Burger, G., Murdock, T.Q., Werner, A.T., Sobie, S.R. and Cannon, A.J., 2012. Downscaling extremes-an intercomparison of multiple statistical methods for present climate. Journal of Climate. 25, 4366–4388.
11.Richardson, C.W., 1981. Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation. Water Resources Research. 17(1), 182-190.
12.Castro, C.L., Pielke, R.A. and Leoncini, G., 2005. Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). Journal of Geophysical Research , Journal of Geophysical Research. 110 (D5), D05108.
13.Chandler, R.E., 2002. GLIMCLIM: Generalised Linear Modelling for Daily Climate Time Series (software and user guide). Research Report No. 227. Department of Statistical Science, University College London.
14.Chen, S.T., Yu, P.S. and Tang, Y.H., 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology. 385 (1–4), 13–22.
15.Corte-Real, J., Qian, B. and Xu, H., 1999. Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre GCM. Climate Dynamics, 15 (12), 921–935.
16.Jeong, D.I., St-Hilaire, A., Ouarda, T.B.M.J. and Gachon, P., 2012. CGCM3 predictors used for daily temperature and precipitation downscaling in Southern Québec, Canada. Theoretical and Applied Climatology. 107(3-4), 389-406.
17.D´iez, E., Primo, C., Garc´ia-moya, J.A., Gutierrez, J.M. and Orfila, B., 2005. Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus. 57A, 409–423.
18.Engida, A.N. and Esteves, M., 2011. Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia. Journal of Hydrology. 399 (3–4), 226–234.
19.Gutmann, E.D., Rasmussen, R.M., Liu,C., Ikeda, K., Gochis, D.J., Clark, M.P., Dudhia, J. and Thompson,G., 2012. A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. Journal of Climate. 25, 262-281.
20.Eum, H.I., Simonovic, S.P. and Kim, Y.O., 2010. Climate change impact assessment using k-nearest neighbor weather generator: case study of the Nakdong River basin in Korea. Journal of Hydrology. Eng. 15 (10), 772–785.
21.Feldman, A.D., Ely, P.B., and Goldman, D.M., 1981. The New HEC-1 Flood Hydrograph Package.
22.Frías, M.D., Zorita, E., Fernández, J. and Rodríguez-Puebla, C., 2006. Testing statistical downscaling methods in simulated climates. Geophysical Research Letters. 33 (19), L19807.
23.Fukunaga, K. and Narendra, P.M., 1975. A Branch and Bound Algorithm for Computing k-Nearest Neighbors. IEEE Trans. Comput. 24 (7), 750-753.
24.Lin, G.F., Chang, M.J. and Wang, C.F., 2017. A Novel Spatiotemporal Statistical Downscaling Method for Hourly Rainfall. Water Resour Manage. 25, 1 – 137.
25.Gyasi-Agyei, Y., 2011. Copula-based daily rainfall disaggregation model. Water Resources Research. 47 (7), W07535.
26.Fowler, H.J., Kilsby, C.G. and Stunell, J., 2007. Modelling the impacts of projected future climate change on water resources in north-west England. Hydrology and Earth System Sciences, 11(3), 1115-1126.
27.Haberlandt, U., Belli, A. and Bárdossy, A., 2015. Statistical downscaling of precipitation using a stochastic rainfall model conditioned on circulation patterns – an evaluation of assumptions. International Journal of Climatology. 35 (3), 417-432.
28.Hessami, M., Gachon, P., Ouarda, T.B.M.J. and St-Hilaire, A., 2008. Automated regression-based statistical downscaling tool. Environ. Model. Environmental Modelling & Software. 23 (6), 813–834.
29.Holland, J.H., 1975. Adaptation in natural and artificial systems. University of Michigan Press.
30.Chen, H., Xiang, H., Zhou, X. and Xu, C.Y., 2012. Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stochastic Environmental Research and Risk Assessment. 26, 847–858.
31.Chu, J.T., Xia, J., Xu, C.Y. and Singh, V.P., 2010. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical and Applied Climatology. 99, 149–161.
32.Liu, J., Yuan, D., Zhang, L., Zou, X. and Song, X., 2016. Comparison of three statistical downscaling methods and ensemble downscaling method based on bayesian model averaging in upper hanjiang river basin, china. Advances in Meteorology. 2016, 1-12.
33.Kalra, A. and Ahmad, S., 2011. Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research. 47 (5), W05555.
34.Beven, K., Warren, R. and Zaoui, J., 1980. SHE: towards a methodology for physically-based distributed forecasting in hydrology. IAHS-AISH Publ. no. 129.
35.King, L.M., Irwin, S., Sarwar, R., McLeod, A.I. and Simonovic, S.P., 2012. The effects of climate change on extreme precipitation events in the Upper Thames River Basin: a comparison of downscaling approaches. Canadian Water Resources Journal. 37 (3), 253–274.
36.Kunstmann, H., Schneider, K., Forkel, R. and Knoche, R., 2004. Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrology and Earth System Sciences. 8 (6), 1031–1045
37.Leander, R. and Buishand, T., 2007. Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology. 332 (3-4), 487-496.
38.Lee, T. and Jeong, C., 2014. Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios. Journal of Hydrology. 510, 182–196.
39.Lee, T., Salas, J.D. and Prairie, J., 2010. An enhanced nonparametric streamflow disaggregation model with genetic algorithm. Water Resources Research. 46 (8), W08545.
40.Lee, T., Salas, J.D., Frevert, D.K. and Fulp, T., 2007. Stochastic simulation study of the colorado river system utilizing alternative models. World Environmental & Water Resources Congress. 2007, Tempa FL.
41.Lu, Y., Qin and X.S., 2014. Multisite rainfall downscaling and disaggregation in a tropical urban area. Journal of Hydrology. 509, 55–65.
42.Booij, M.J., 2005. Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology. 303, 176–198.
43.Marani, M. and Zanetti, S., 2007. Downscaling rainfall temporal variability. Water Resources Research. 43 (9), W09415.
44.Menzel, L. and Burger, G., 2002. Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany), Journal of Hydrology. 267, 53–64.
45.Mezghani, A. and Hingray, B., 2009. A combined downscaling-disaggregation weather generator for stochastic of multisite hourly weather variables over complex terrain: development and multi-scale validation for the Upper Rhone River basin. Journal of Hydrology. 377 (3–4), 245–260.
46.Semenov, M.A. and Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change. 35, 397–414.
47.Min, Y.M., Kryjov, V.N., An, K.H., Hameed, S.N., Sohn, S.J., Lee, W.J. and Oh, J.H., 2011. Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pacific Journal of Atmospheric Sciences. 47 (3), 255–263.
48.Nowak, K., Prairie, J., Rajagopalan, B. and Lall, U., 2010. A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow. Water Resources Research. 46 (8), W08529.
49.Palutikof, J.P., Goodess, C.M., Watkins, S.J. and Holt, T., 2002. Generating rainfall and temperature scenarios at multiple sites: examples from the Mediterranean. Journal of Climate. 15 (24), 3529–3548.
50.Coulibaly, P., 2004. Downscaling daily extreme temperatures with genetic programming. Geophysical Research Letters. 31, L16203
51.Prairie, J., Rajagopalan, B., Lall, U. and Fulp, T., 2007. A stochastic nonparametric technique for space-time disaggregation of streamflows. Water Resources Research. 43 (3), W03432.
52.Prairie, J.R., Rajagopalan, B., Fulp, T.J. and Zagona, E.A., 2006. Modified K-NN model for stochastic streamflow simulation. Journal of Hydrologic Engineering. 11 (4), 371–378.
53.Wilby, R.L., Dawson, C.W. and Barrow, E.M., 2002. SDSM — a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software. 17, 147–159.
54.Racsko, P., Szeidl, L. and Semenov, M., 1991. A serial approach to local stochastic weather models. Ecological Modelling, 57 (1–2), 27–41.
55.Rajagopalan, B. and Lall, U., 1998. Interannual variability in western US precipitation. Journal of Hydrology. 210 (1–4), 51–67.
56.Mahmood, R. and Babel, M.S., 2013. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theoretical and Applied Climatology. 113(1-2), 27-44.
57.Rashid, M.M., Beecham, S. and Chowdhury, R., 2013. Simulation of extreme rainfall from CMIP5 in the Onkaparinga catchment using a generalized linear model. Modelling and Simulation Society of Australia and New Zealand. 2520–2526.
58.Rodriguez-Iturbe, I., Cox, D.R. and Isham, V., 1988. A point process model for rainfall: Further developments. Royal Soc. London Series A 417 (1853), 283–298.
59.Salas, J. and Lee, T., 2010. Nonparametric Simulation of Single-Site Seasonal Streamflows. Journal of Hydrology. Eng. 15 (4), 284-296.
60.Schoof, C., 2007, Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research. 112 (F3), F0328.
61.Sorman, A.A., Sensoy , A., Tekeli, A.E., Sorman, A.Ü. and Akyurek, Z., 2009. Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrological Processes. 23, 1031-1040.
62.Srinivasan, R. and Arnold, J.G., 1994. Integration of a basin-scale water quality model with GIS. Water Resources. Bull. 30(3): 453- 462
63.Bergström, B., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A. and Rummukainen, M., 2001. Climate change impacts on runoff in Sweden assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research. Vol. 16: 101–112, 2001.
64.Gangopadhyay, S., Clark, M. and Rajagopalan, B., 2005. Statistical downscaling using K-nearest neighbors. Water Resources Research. 41(2).
65.Sugawara and Masami, 1974. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune. Research note of the National Research Center for Disaster Prevention, No.11:1-64.
66.Yang, T., Li, H., Wang, H., Xu, C.Y. and Yu, Z., 2012. Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes. 26, 3510–3523.
67.Tripathi, S., Srinivas, V.V. and Nanjundiah, R.S., 2006. Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrologic. 330 (3–4), 621–640.
68.Tseng, H.W., Yang, T.C., Kuo, C.M. and Yu, P.S., 2012. Application of multi-site weather generators for investigating wet and dry spell Lengths under climate change: a case study in southern Taiwan. Water Resources Management. 26 (15), 4311–4326.
69.USAID, 2014. A Review of Downscaling Methods for Climate Change Projections: African and Latin American Resilience to Climate Change Project. USAID: Washington, DC, USA.
70.Srinivas, V.V., Basu, B., Kumar, D.N. and Jain, S.K., 2013. Multi-site downscaling of maximum and minimum daily temperature using support vector machine. International Journal of Climatology. 34: 1538–1560
71.Wilby, R.L., Dawon, C.W. and Barrow E.M., 2002. SDSM-a decision support tool for the assessment of regional climate change impacts. Environ. Model. Environmental Modelling & Software. 17 (2), 145–157.
72.Wilks, D.S. and Wilby, R.L., 1999. The weather generation game: A review of stochastic weather models. Progress in Physical Geography. 23 (3), 329–357.
73.Wilks, D.S., 1992. Adapting stochastic weather generation algorithms for climate change studies. Climatic Change. 22 (1), 67–84.
74.Chen, X., Wu, J. and Hu, Q., 2008. Simulation of Climate Change Impacts on Streamflow in the Bosten Lake Basin Using an Artificial Neural Network Model. Journal of Hydrologic Engineering. 13(3), 180-183.
75.Dibike, Y.B., Gachon, P., St-Hilaire, A., Ouarda, T. B. M. J. and Nguyen, V.T.-V., 2008. Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology. 91(1-4), 149-170.
76.Yang, T.C., Yu, P.S., Wei, C.M. and Chen, S.T., 2011. Projection of climate change for daily precipitation: a case study in Shih-Men reservoir catchment in Taiwan. Hydrological Processes. 25 (8), 1342–1354.
77.Yates, D., Gangopadhyay, S., Rajagopalan, B. and Strzepek, K., 2003. A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resources Research. 39 (7), 1199.
78.Yoon, J.-H., Leung, L.R. and Correia, J., 2012. Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. Journal of Geophysical Research. Atmos. 117 (D21), D21109.
79.Yu, P.S., Yang, T.C. and Wu, C.K., 2002. Impact of climate change on water resources in southern Taiwan. Journal of Hydrology. 260 (1–4), 161–175.
80.Zorita, E. and Storch, H.V., 1999. The analog method as a simple statistical downscaling technique: comparison with more complicated method. Journal of Climate. 12 (8), 2474–2489.
81.吳爵廷,2014,基於雨量型態的統計降尺度方法研究,國立台灣大學土木工程學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊