跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴勇安
研究生(外文):Yong-An Lai
論文名稱:相位控制調諧質量阻尼器
論文名稱(外文):Phase Control Tuned Mass Damper
指導教授:鍾立來鍾立來引用關係
口試日期:2017-07-13
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:220
中文關鍵詞:調諧質量阻尼器半主動控制相位控制能量流理論(power flow theory)可變摩擦系統結構控制
外文關鍵詞:tuned mass damper (TMD)semi-active controlphase controlpower flow theoryvariable friction systemstructural control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:652
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今對於調諧質塊阻尼器的研究與應用已相當廣泛,但經由解析相位去了解調諧質塊阻尼器之減振效果,仍著墨較少且不完全。因此本文先針對調諧質量阻尼器之能量流理論(power flow theory)進一步闡述,探討調諧質量阻尼器與結構之間的相位關係,其顯示調諧質量阻尼器於90度相位差落後時為吸收結構能量,但於90度相位差超前時,則反將能量傳回結構。此外,並探討調諧質量阻尼器與外力之間的相位,對減振效果的影響,提出調諧質量阻尼器之能量阻抗的概念,其顯示與外力為180度相位差時有最佳之阻抗效果,較全面性的討論相位對調諧質量阻尼器減振效果的影響。而後,本文提出半主動式相位控制調諧質量阻尼器,其模型為傳統調諧質量阻尼器外加一半主動控制之摩擦裝置,藉由半主動控制之摩擦力,於調諧質塊擺動之特定時間,施加摩擦力,可調整質量塊與結構之間之相位,使其能盡量維持與結構為一落後90度之相位差,因而如能量流理論所述般達到最佳減振效果。為驗證相位控制調諧質量阻尼器之可行性,分別以單自由度結構或多自由度結構,於諧和外力、風力或基底振動下,進行一系列之數值模擬。數值模擬結果顯示,結構加裝相位控制調諧質量阻尼器後,於風力或基底振動下,與傳統調諧質量阻尼器相比皆可有較大的減振頻率帶寬,且不論多自由度結構或其經單自由度化之結構,結構反應皆可有更佳之控制效果。由相位控制調諧質量阻尼器設計參數之敏感度分析顯示,相位控制調諧質量阻尼器對於其設計之頻率比及阻尼比皆不敏感,因此可同時於風力下及基底振動下之應用,解決傳統調諧質量阻尼器適應式之問題。唯所需之摩擦力限制較多,如施加之摩擦力太小,則失去相位控制效果,如施加之摩擦力太大,則摩擦力將對於結構加速度將有一負面影響,因此設計時需仔細考量。最後以實際案例進行風力及地震力之數值分析,驗證相位控制調諧質量阻尼器確實可發揮減振效果,滿足其舒適度之要求,更可降低離頻效應之影響。
Although the energy absorbing ability of the TMD has been discussed by power flow theory, the phase-mechanism of the TMD is not comprehensively discussed. In this study, the phase of the TMD relative to the structure is presented in power flow theory and discussed in detail, and the phase of the TMD relative to the external force is further discussed and described by the power reactance which shows the TMD has the ability to balance the external energy input to the system. Based on the power flow theory, the semi-active phase control tuned mass damper (PC-TMD) is developed and investigated. The phase control algorithm is proposed for the PC-TMD to judge the specific moment to apply friction force by semi-active friction device. By applying the friction force, the PC-TMD mass block moves along the desired trace and back to the 90-degree phase lag to the structure for achieving the maximum power flow. The numerical simulations demonstrate that the PC-TMD outperforms the conventional TMD in structural vibration reduction, especially for mitigating the detuning problem. The simulation results also indicate that the PC-TMD can be utilized for wind loads or base excitation application, and for single-degree-of-freedom (SDOF) structure or multiple-degree-of-freedom (MDOF) structure. In addition, the design parameters of the PC-TMD is the same for both wind loads and base excitation application so that the PC-TMD can be well performed for wind loads and base excitation simultaneously.
審定書 i
Abstract v
中文摘要 vii
Contents ix
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Literature review 5
1.3 Organization and objectives of the dissertation 10
Chapter 2 Essence of Phase for Tuned Mass Damper 13
2.1 Modeling of SDOF structure implemented with TMD 13
2.1.1 Equation of motion 13
2.1.2 State-Space representation 16
2.1.3 Transfer function and frequency responses function 17
2.2 Power flow theory 19
2.3 Power reactance 24
2.4 TMD stroke 26
2.5 Numerical Simulations 27
2.5.1 Frequency response function 29
2.5.2 Free vibration simulations 34
2.6 Discussion 45
Chapter 3 SDOF Structure Implemented with PC-TMD for Wind Loads Application 47
3.1 Equations of motion for a SDOF structure with a phase control tuned mass damper under wind loads 49
3.2 Real time phase observation and phase control strategies 51
3.3 Sign judgment criteria for friction force applications 58
3.4 The on-off friction force calculation 63
3.5 Phase Control Algorithm 65
3.6 Numerical Verification of a SDOF structure implemented with a PC-TMD 69
3.6.1 Sinusoidal loads 70
3.6.1.1 External load with a frequency of 1.0 times the natural frequency of the structure 71
3.6.1.2 External load with a frequency of 0.95 times the natural frequency of the structure 74
3.6.1.3 External load with a frequency of 1.05 times the natural frequency of the structure 79
3.6.2 Frequency Response Function 84
3.6.2.1 Optimal design parameters of TMD and PC-TMD 84
3.6.2.2 Off-tuned effect of TMD and PC-TMD 87
3.6.2.3 Comparison of maximum friction force of PC-TMD 92
3.6.3 Free Vibration 94
3.6.4 Design Wind Loads 98
3.6.4.1 Sensitivity analysis of the TMD frequency ratio under design wind force 103
3.6.4.2 Sensitivity analysis of the TMD damping ratio under design wind force 105
3.6.4.3 Sensitivity analysis of the maximum friction force of PC-TMD under design wind force 107
3.7 Conclusions of SDOF structure implemented with the PC-TMD for wind loads applications 110
Chapter 4 MDOF Structure Implemented with PC-TMD for Wind Loads Application 115
4.1 A 3-DOF structure implemented with two PC-TMDs 115
4.1.1 Modeling of a 3-DOF structure implemented with two PC-TMDs 115
4.1.2 Phase control algorithm for 3-DOF structure 122
4.1.3 The on-off friction force calculation 123
4.1.4 Numerical Simulations 127
4.1.4.1 Frequency Response Functions 130
4.1.4.2 Design Wind Loads Time History Analysis 134
4.1.5 Conclusions of A 3-DOF structure implemented with two PC-TMDs 143
4.2 A 42-story building implemented with a PC-TMD 145
4.2.1 Modeling of a 42-DOF structure implemented with a PC-TMD 145
4.2.2 Parameters of Primary Structure and TMDs 150
4.2.3 Phase control algorithm for MDOF structure 151
4.2.4 Real-time filter application for phase control algorithm 152
4.2.5 Numerical Simulation 156
4.2.6 Conclusions of A 42-DOF structure implemented with the PC-TMD 162
Chapter 5 SDOF Structure Implemented with PC-TMD for Base Excitation Application 165
5.1 Equations of motion for a SDOF structure with a phase control tuned mass damper under base excitation 165
5.2 Phase control algorithm for base excitation 168
5.3 The on-off friction force calculation 168
5.4 Numerical Verification of a SDOF structure implemented with a PC-TMD 170
5.4.1 Frequency Response Function 172
5.4.1.1 Without de-tuning effect for TMD and PC-TMD 172
5.4.1.2 Off-tuned effect of TMD and PC-TMD 175
5.4.2 Design Earthquakes 180
5.4.2.1 Sensitivity analysis of the TMD frequency ratio under the in-site earthquake 187
5.4.2.2 Sensitivity analysis of the TMD damping ratio under the in-site earthquake 189
5.4.2.3 Sensitivity analysis of the maximum friction force of PC-TMD under the in-site earthquake 191
5.4.2.4 Sensitivity analysis of the earthquakes 194
5.5 Conclusions of SDOF structure implemented with the PC-TMD for base excitation applications 197
Chapter 6 Conclusions and Future Works 201
6.1 Summaries and Conclusions 201
6.2 Recommendations for future works 205
Reference 207
Appendix A. Frequency Response Function of A 2DOF System 215
Appendix B. Instantaneous Phase Calculation by Hilbert Transform 217
Appendix C. Preliminary Design of Maximum Friction Force for the PC-TMD 219
Reference
1.Gutierrez Soto M, Adeli H. Tuned Mass Dampers. Archives of Computational Methods in Engineering, 20: 419-431, 2013.
2.Official website of 101 Taipei Financial Center Corp, Retrieved June 25, 2017, from http://www.taipei-101.com.tw/.
3.Shi W, Shan J, Lu X. Modal identification of Shanghai World Financial Center both from free and ambient vibration response. Engineering Structure, 36:14-26, (2012).
4.Lu X, Li P, Guo X, Shi W, Liu J. Vibration control using ATMD and site measurements on the Shanghai World Financial Center Tower. The Structural Design of Tall and Special Buildings, 23:105-123, (2014).
5.Frahm H. Device for damping vibration of bodies. US. Patent No. 989958, 1911.
6.Den Hartog JP. Mechanical Vibrations. McGraw-Hill: New York, 1956.
7.Warburton GB, Ayorinde EO. Optimum absorber parameters for simple systems. Earthquake Engineering and Structural Dynamics, 8:197-217, 1980.
8.Ayorinde EO, Warburton GB. Minimizing structural vibrations with absorbers. Earthquake Engineering and Structural Dynamics, 8:219-236, 1980.
9.Warburton GB. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering and Structural Dynamics, 10:381-401, 1982.
10.Sadek F, Mohraz B, Taylor AW, Chung RM. A method of estimating the parameters of mass dampers for seismic applications. Earthquake Engineering and Structural Dynamics, 26:617-635, 1997.
11.Tsai HC, Lin GC. Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped system. Earthquake Engineering and Structural Dynamics, 22:957-973, 1993.
12.Ghosh A, Basu B. A closed-form optimal tuning criterion for TMD in damped structures, Structural Control and Health Monitoring, 14:681-692, 2005.
13.Bakre SV, Jangid RS. Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring, 14:448-470, 2007.
14.Wang JF, Lin CC, Lian CH. Two-stage optimum design of tuned mass dampers with consideration of stroke. Structural Control and Health Monitoring, 16:55-72, 2009.
15.Chung LL, Wu LY, Huang HH, Chang CH, Lien KH. Optimal design theories of tuned mass dampers with nonlinear viscous damping. Earthquake Engineering and Engineering Vibration, 8(4):547-560, 2009.
16.Chung LL, Wu LY, Yang CSW, Lien KH, Lin MC, Huang HH. Optimal design formulas for viscous tuned mass dampers in wind-excited structures. Structural Control and Health Monitoring, 20(3):320-336, 2013.
17.Xu K, Igusa T. Dynamic characteristics of multiple substructures with closely spaced frequencies. Earthquake Engineering and Structural Dynamics 1992; 21:1059-1070.
18.Singh MP, Singh S, Moreschi LM. Tuned mass dampers for response control of torsional buildings. Earthquake engineering and structural dynamics, 31:749-769, 2002.
19.Ueng JM, Lin CC, Wang JF. Practical design issues of tuned mass dampers for torsionally coupled buildings under earthquake loadings. The structural design of tall and special buildings, 17:133-165, 2008.
20.Lin JL, Tsai KC, Yu YJ. Bi-directional coupled tuned mass dampers for the seismic response control of two-way asymmetric-plan buildings. Earthquake engineering and structural dynamics, 40:675-690, 2011.
21. Lin CC, Wang JF, Lien CH, Chiang HW, Lin CS. Optimum design and experimental study of multiple tuned mass dampers with limited stroke. Earthquake Engineering and Structural Dynamics, 39(14):1631-1651, 2010.
22.Iwanami K, Seto K. Optimum design of dual tuned mass dampers with their effectiveness. Proceedings of the Japan Society of Mechanical Engineering, 50(1):44-52, 1984.
23.Abe M, Fujino Y. Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthquake Engineering and Structural Dynamics, 23(8):813-836, 1994.
24.Kareem A, Kline S. Performance of multiple mass dampers under random loading. Journal of Structural Engineering, 121(2):348-361, 1995.
25.Bakre SV, Jangid RS. Optimum multiple tuned mass dampers for base-excited damped main system. International Journal of Structural Stability and Dynamics, 4:527-542, 2004.
26.Hoang N, Warnitchi P. Design of multiple tuned mass dampers by using a numerical optimizer. Earthquake Engineering and Structural Dynamics, 34:125-144, 2005.
27.Al-Saif KA, Aldakkan KA, Foda MA. Modified liquid column damper for vibration control of structures. International Journal of Mechanical Sciences, 53(7):505-512, 2011.
28.Ghaemmaghami A, Kianoush R, Yuan XX. Numerical modeling of dynamic behavior of annular tuned liquid dampers for applications in wind towers. Computer-Aided Civil and Infrastructure Engineering, 28(1):38-51, 2013.
29.Kim H, Adeli H. Wind-induced motion control of 76-story benchmark building using the hybrid damper-tuned liquid column damper system. Journal of Structure Engineering, 131(12):1794-1802, 2005.
30.Aldemir U, Yanik A, Bakiogl MU. Control of structural response under earthquake excitation. Computer-Aided Civil and Infrastructure Engineering, 27(8):620-638, 2012.
31.Almazan JL, De la Llera JC, Inaudi JA, Lopez-Garcia D, Izquierdo LE. A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations. Engineering Structures, 29(7):1548-1560, 2007.
32.Almazan JL, Espinoza G, Aguirre JJ. Torsional balance of asymmetric structures by means of tuned mass dampers. Engineering Structures, 42:308-328, 2012.
33.Gerges RR, Vickery BJ. Optimum design of pendulum-type tuned mass dampers. The Structural Design of Tall and Special Buildings, 14:353-368, 2005.
34.Kareem A, Kline S. Performance of multiple mass dampers under random loading. Journal of Structural Engineering, 121(2):348-361, 1995.
35.Chang JCH, Soong TT. Structural control using active tuned mass dampers. Journal of Engineering Mechanics 1980; 106:1091-1098.
36.Aizawa S, Fukao Y, Minewaki S, Hayamizu Y, Abe H, Haniuda N. An experimental study on the active mass damper. Proceedings of Ninth World Conference on Earthquake Engineering 1988; 5:871-876.
37.Andrade RA, Lopez-Almansa F, Rodellar J. Influence of time delays in the efficiency of active mass dampers. Smart Materials and Structures, 4:A1-A8, 1995.
38.Loh CH, Chao CH. Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-story building. Journal of Sound and Vibration, 193:773-792, 1995.
39Nagashima I. Optimal displacement feedback control law for active tuned mass damper. Earthquake Engineering and Structural Dynamics, 30:1221-1242, 2001.
40.Samali B, Al-Dawod M. Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller. Engineering structures, 25:1597-1610, 2003.
41.Guclu R, Yazici H. Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. Journal of Sound and Vibration, 318:36-49, 2008.
42.Chu SY, Soong TT, Reinhorn AM. Active, Hybrid and Semi-Active Structural Control Wiley: New York, 2005.
43.Bitaraf M, Hurlebaus S, Barroso LR. Active and semi-active adaptive control for undamaged and damaged building structures under seismic load. Computer-Aided Civil and Infrastructure Engineering, 27(1):48-64, 2012.
44.Fisco NR, Adeli H. Smart structures: part I-active and semi-active control. Scientia Iranica Transactions A: Civil Engineering, 18(3):275-284, 2011.
45.Fisco NR, Adeli H. Smart structures: part II-hybrid control systems and control strategies. Scientia Iranica Transactions A: Civil Engineering, 18(3):285-295, 2011.
46.Adeli H, Saleh A. Optimal control of adaptive/smart bridge structures. Journal of Structural Engineering, 123(2):218-226, 1997.
47.Soong TT. Active Structural Control: Theory and Practice. Longman Scientific & Technical: England, 1990.
48.Hrovat D, Barak P, Robins M. Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, 109:691-701, 1983.
49.Abe M, Semi-active tuned mass dampers for seismic protection of civil structures. Earthquake Engineering and Structural Dynamics, 25:743-749, 1996.
50.Abe M, Igusa T. Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 198:547-569, 1996.
51.Setareh M. Application of semi-active tuned mass dampers to base-excited systems. Earthquake Engineering and Structural Dynamics, 30:449-462, 2001.
52.Lin PY, Chung LL, Loh CH. Semiactive control of building structures with semiactive tuned mass damper. Computer-Aided Civil and Infrastructure Engineering, 20:35-51, 2005.
53.Lin CC, Lin GL, Wang JF. Protection of seismic structures using semi-active friction TMD. Earthquake Engineering and Structural Dynamics, 39:635-659, 2010.
54.Lin GL, Lin CC, Lu LY, Ho YB. Experimental verification of seismic vibration control using a semi-active friction tuned mass damper. Earthquake Engineering and Structural Dynamics, 41:813-830, 2011.
55.Tse KT, Kwok KCS, Hitchcock PA, Samali B, Huang MF. Vibration control of a wind-excited benchmark tall building with complex lateral-torsional modes of vibration. Advances in Structural Engineering, 10(3):283-304, 2007.
56.Pinkaew T, Fujino Y. Effectiveness of semi-active tuned mass dampers under harmonic excitation. Engineering Structures, 23:850-856, 2001.
57.Aldemir U. Optimal control of structures with semi-active tuned mass dampers. Journal of Sound and Vibration, 226:847-874, 2003.
58.Lin CC, Lu LY, Lin GL, Yang TW. Vibration control of seismic structures using semi-active friction multiple tuned mass dampers. Engineering Structures, 32:3404-3417, 2010.
59.Soong TT, Spencer BF. Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259, 2002.
60.Zemp R, De la Llera JC, Almazán JL. Tall building vibration control using a TM-MR damper assembly. Earthquake Engineering and Structural Dynamics, 40(3):339-354, 2011.
61.Zemp R, De la Llera JC, Roschke P. Tall building vibration control using a TM-MR damper assembly: experimental results and implementation. Earthquake Engineering and Structural Dynamics, 40(3):257-271, 2011.
62.Gu M, Chen SR, Chang CC. Control of wind-induced vibrations of long-span bridges by semi-active lever-type TMD. Journal of Wind Engineering and Industrial Aerodynamics, 90:111-126, 2002.
63.Varadarajan N, Nagarajaiah S. Wind response control of building with variable stiffness tuned mass damper using empirical mode decomposition/hilbert transform. Journal of engineering mechanics, 130:451-458, 2004.
64.Nagarajaiah S, Varadarajan N. Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD. Engineering structures, 27:431-441, 2005.
65.Nagarajaiah S. Adaptive stiffness systems: Recent developments in structural control using semiactive/smart variable stiffness and adaptive passive stiffness. Proceedings 5th World Conference on Structural Control and Monitoring 2010 (Shinjuku, Tokyo, July)
66.Pasala DTR, Nagarajaiah S. Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time. Smart Structures and Systems, 13(2):203-217, 2014.
67.Roffel AJ, Lourenco R, Narasimhan S, Yarusevych S. Adaptive Compensation for Detuning in Pendulum Tuned Mass Dampers. Journal of Structural Engineering, 137:242:251, 2011.
68.Nagarajaiah S, Sonmez E. Structures with semiactive variable stiffness single/multiple tuned mass dampers. Journal of Structural Engineering, 133:67-77, 2007.
69.Collins R, Basu B, Broderick B. Bang-bang and semiactive control with variable stiffness TMDs. Journal of Structural Engineering, 134:310-317, 2008.
70.Kim H, Adeli H. Hybrid control of irregular steel highrise building structures under seismic excitations. Internal Journal for Numerical Methods in Engineering, 63(12):1757-1774, 2005.
71.Soong TT, Dargush GF. Passive Energy Dissipation Systems in Structural Engineering. Wiley: New York, 1997.
72.Chung LL, Lai YA, Yang CS W, Lien KH, Wu LY. Semi-active Tuned Mass Damper with Phase Control. Journal of Sound and Vibration, 332:3610-3625, 2013.
73.Lin GL, Lin CC. Instantaneous Phase Detection for Performance Verification of Tuned Mass Dampers. ASME 2015 Pressure Vessels and Piping Conference; (Boston, Massachusetts, July)
74.Moutinho C. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers. Smart Materials and Structures, 24:055007, 2015.
75.Chung LL, Wu LY, Lai YA, Lien KH, Huang HH. The optimal design of tuned mass dampers by minimized the mean square of structural displacements. Structural Engineering, 26(4):31-58, 2011. (In Chinese)
76.Lu LY, Chung LL, Wu LY, Lin GL. Dynamic analysis of structures with friction devices using discrete-time state-space formulation. Computers and Structures, 84:1049-1071, 2006.
77.Davenport AG. The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of Royal Meteorological Society, 87:194-211, 1961.
78.Lien KH. Semi-active control of pendulum-like TMD with variable length. Doctoral Dissertation, National Taiwan University, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊