(3.238.186.43) 您好!臺灣時間:2021/02/28 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王璟瑜
研究生(外文):Ching-Yu Wang
論文名稱:三維空間中砂丘的稜線輸砂量與背風面的積進之關係
論文名稱(外文):Relationship between brinkline sand flux and slip face progragation for three dimensional dunes
指導教授:卡艾瑋
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:輸砂量沙丘背風面渠槽實驗頂頭額沙洲UAV
外文關鍵詞:DunesSlip faceProgradationExperimentDingtoue SandbankUAV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究致力於探討沙丘背風面的堆積前進與稜線輸砂量分布之間的關係,藉由理論配合實驗以及現地測量結果來模擬沙丘稜線輸砂量。簡化假設的理論將三角洲的演進推演到三維空間中的沙丘的背風面,是一個更廣泛性的理論,同時也建立數值模型,來模擬實驗的新月形沙丘和現地沙丘的稜線書砂量分布並以簡單的拋物線型稜線來驗證數值模型的正確性。透過渠槽實驗,使用雷射掃描將新月形沙丘的形貌量化並且記錄其演化過程,從新月形沙丘的演化實驗可以發現拋物線型稜線的模擬有許多相符合的定性結果。另外,本研究應用無人載具搭配影像測量重建頂頭額沙洲的高解析度三維模型,從兩次不同時間的測量分析現地沙丘稜線的移動,以供數值模型進行稜線書砂量的模擬。
The purpose of the research is to explore the relationship between dune slip face progradation and sand flux with simplified theory, experiment and field survey. Based on the concept of delta front progradation, the theory of dune slip face progradation is generalized to account for greater freedom. To apply the theory we derived, the numerical model for simulation of sand flux is established. The distribution of sand flux can be calculated with brinkline shape, the angle of repose and the moving velocity of brinkline. With a simple parabolic shape of brinkline, different shape of dunes can be illustrated and the simulation model can be verified. Experiment of dune, which is conducted under water, can reveal the evolution efficiently because the viscosity of water is much higher than air. The barchan dune experiment, which is particularly accessible for experimental investigation, provides well-controlled conditions to test the simulation model. In addition, some experiment results correspond to the simulation of parabolic brinkline. The dune shape in Dingtoue Sandbank is successfully measured with Unmanned Aircraft Vehicle (UAV) and the observation result is applied to the simulation model as a complex condition. This thesis shows the preliminary research from three kinds of methods and we leave several future works to be expected.
口試委員會審定書 ......................................................................................................#
誌謝 ...............................................................................................................................i
中文摘要 ......................................................................................................................ii
Abstract ...…………………………………………………………………………….iii
Table of Content ……………………………………………………………………....v
List of Figures ……………………………………………………………………......iv
List of Tables ………………………………………………………………..……......iv
Chapter 1 Introdution ………………………………………………………………....1
Chapter 2 Theory.……………………………………………………………………...4
2.1 General theory.……………………………………………………………….4
2.1.1 Static: slip face shape from brinkline.………………………………...4
2.1.2 Kinematic evolution equation.………………………………………..7
2.1.3 Transport distribution.……………………………………………….10
2.2 Comparison with previous work for special cases.…………………………12
2.2.1 One-dimensional dune.………………………………………………12
2.2.2 Delta front progradation …………………………………………….13
2.3 Numerical model……………………………………………………………14
2.3.1 Definition of discrete system………………………………………..14
2.3.2 Slip face decision……………………………………………………14
2.3.3 Discrete sand flux formula…………………………………………..16
Chapter 3 Application of parabolic brinkline dunes……………………………….....17
3.1 Analyzing different shape of parabolic brinkline dunes…………………….17
3.1.1 Slip face shape……………………………………………………….17
3.1.2 Sand flux distribution………………………………………………..22
3.2 Verification of model………………………………………………………..25
3.2.1 Slip face……………………………………………………………...25
3.2.2 Sand flux…………………………………………………………….26
Chapter 4 Barchan Dune Evolution Experiment…………………………………...28
4.1 Background…………………………………………………………………28
4.1.1 One-dimensional experiment………………………………………..28
4.1.2 Flume and recirculation system……………………………………..29
4.1.3 Exploration of dune experiment……………………………………..31
4.2 Image measurement…………………………………………………………35
4.2.1 Laser scanning system……………………………………………….35
4.2.2 Laser device………………………………………………………….35
4.2.3 Track…………………………………………………………………36
4.2.4 Frame………………………………………………………………...37
4.3 Image acquisition…………………………………………………………...39
4.3.1 Difficulties…………………………………………………………...39
4.3.2 Camera arrangements………………………………………………..39
4.4 Image processing…………………………………………………………....40
4.4.1 Calibration…………………………………………………………...40
4.4.2 Laser line catcher……………………………………………….…...42
4.4.3 Laser line position on each image…………………………………...43
4.4.4 Transfer 2D image lines to 3D lines…………………………...…….43
4.4.5 Digital terrain Model (DTM)………………………………………..44
4.5 Numerical result of experiment data………………………………………..46
Chapter 5 Field Survey……………………………………………………………..52
5.1 Field background……………………………………………………………52
5.2 Measurement approach……………………………………………………...53
5.2.1 Photogrammetry survey……………………………………………..53
5.2.2 Pre-work plane………………………………………………………55
5.2.3 Survey process……………………………………………………….57
5.3 Field survey result…………………………………………………………..58
5.3.1 Reconstruction model………………………………………………..58
5.3.2 Error evaluation ……………………………………………………..62
5.3.4 Brinkline migration from field………………………………………64
5.4 Numerical model applying …………………………………………………68
Chapter 6 Conclusion………………………………………………………………71
Reference……………………………………………………………………………..73
Andreotti, B., Claudin, P., & Douady, S. (2002). Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans. The European Physical Journal B-Condensed Matter and Complex Systems, 28(3), 321-339.
Andreotti, B., Claudin, P., & Douady, S. (2002). Selection of dune shapes and velocities Part 2: A two-dimensional modelling. The European Physical Journal B-Condensed Matter and Complex Systems, 28(3), 341-352.
Chen, I-Hsiang (2013). Twin Laser Sheets Scanning of 3D Velocity Fields in Steady Open Channel Flow Experiment. MSc thesis, Department of Civil Engineering , National Taiwan University.
Endo, N., Taniguchi, K., & Katsuki, A. (2004). Observation of the whole process of interaction between barchans by flume experiments. Geophysical Research Letters, 31(12).
Groh, C., Rehberg, I., & Kruelle, C. A. (2009). How attractive is a barchan dune?. New Journal of Physics, 11(2), 023014.
Guignier, L., Niiya, H., Nishimori, H., Lague, D., & Valance, A. (2013). Sand dunes as migrating strings. Physical Review E, 87(5), 052206.
Hersen, P. (2004). On the crescentic shape of barchan dunes. The European Physical Journal B-Condensed Matter and Complex Systems, 37(4), 507-514.
Hersen, P. (2005). Flow effects on the morphology and dynamics of aeolian and subaqueous barchan dunes. Journal of Geophysical Research: Earth Surface, 110(F4).
Huang, Chien-Lin (2014). Debris Fan Morphology Measured in the Lab and Field Using Digital Photogrammetry. MSc thesis, Department of Civil Engineering , National Taiwan University.
Hugenholtz, C. H., Levin, N., Barchyn, T. E., & Baddock, M. C. (2012). Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth-science reviews, 111(3), 319-334.
Ke, W. T., (2005). Formation of symmetrically palmated deltas: shallow flow computations and experimental study, M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Ke, W. T., & Capart, H. (2015). Theory for the curvature dependence of delta front progradation. Geophysical Research Letters, 42(24).
Lai, Y. J., (2010). Morphodynamics of coevolving fluvial and hyperpycnal valleys,Doctoral dissertation, Graduate Institute of Civil Engineering, National Taiwan University.
Lancaster, N., Nickling, W. G., Neuman, C. M., & Wyatt, V. E. (1996). Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology, 17(1-3), 55-62.
Li, L. P., (2017). A Study Of Terrain Interpretation by Self-Created Three-Dimensional Visualization Maps, M.S. thesis, Graduate Department of Soil and Water conservation , National Chung Hsing University, P.66-67.
Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898.
Ni, W. J., & Capart, H. (2006). “Groundwater drainage and recharge by networks of irregular channels.” Journal of Geophysical Research: Earth Surface, 111(F2).
Ni, W. J., (2005). Groundwater drainage and recharge by geomorphically active gullies.M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Reffet, E., Du Pont, S. C., Hersen, P., & Douady, S. (2010). Formation and stability of transverse and longitudinal sand dunes. Geology, 38(6), 491-494.
Wiggs, G. F., Livingstone, I., & Warren, A. (1996). The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology, 17(1-3), 29-46.
石再添, et al. "台灣北部海岸沙丘之地形學研究." (1993): 193-239.
石再添, et al. "台灣西部海岸沙丘之地形學研究." (1995).
游繁結. (1986). 台灣西海岸飛砂量推估之初步研究.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔