[1]Arduino 官網:https://www.arduino.cc/, 2017.5.
[2]Digi 官網:http://www.digi.com/, 2017.5.
[3]Institute of Electrical and Electronics Engineers 802.15 WPANTM Task Group 4 (TG4), http://www.ieee802.org/15/pub/TG4.html, 2012
[4]W.H. Liao, et al. (2001),Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films, Journal of Intelligent Material Systems and Structures, Vol. 12, pp.331
[5]I.F. Akyildiz, et al. (2002), Wireless sensor networks: a survey, Computer Networks, Vol. 38, Issue 4, pp.393-422.
[6]Jerome P. Lynch, et al. (2003), Field validation of a wireless structural monitoring system on the Alamosa Canyon Bridge, Smart Structures and Materials, Vol. 5057
[7]Ning Xu, et al. (2004), A Wireless Sensor Network for Structural Monitoring, SenSys’04, Baltimore, Maryland, USA.
[8]Sinem Coleri Ergen (2004), ZigBee/IEEE 802.15.4 Summary
[9]Ou, J. P., et al. (2005), Health dynamic measurement of tall building using wireless sensor network, Smart Structures and Materials 2005- Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA.
[10]N. Kurata, et al. (2005), Risk monitoring of buildings with wireless sensor networks, Structural Control and Health Monitoring, Vol. 12, pp.315-327
[11]J. P. Ou, et al. (2005), Health dynamic measurement of tall building using wireless sensor network, Smart Structures and Materials 2005- Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA.
[12]C.R. Farrar, et al. (2006), Sensor network paradigms for structural health monitoring, Structural Control and Health Monitoring, Vol. 13, pp.210-225
[13]Y. Gao, et al.(2006),Distributed computing strategy for structural health monitoring, Structural Control and Health Monitoring, Vol. 13, pp.488-507
[14]Choi, H., Choi, S., Cha, H. (2008), "Structural Health Monitoring System based on Strain Gauge Enabled Wireless Sensor Nodes", INSS: International Conference on Networked Sensing Systems, Kanazawa, Japan, June 17-19
[15]IEEE Std 802.15.4dTM (2009), IEEE Computer Society, Amendment 3
[16]Cho, S., Jo, H., Jang, S.A., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr., B.F., and Seo, J. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: data analyses," Smart Structures and Systems, Vol. 6 (5-6), 461-480.
[17]Kaya, A. (2010). "Artificial neural network study of observed pattern of scour depth around bridge piers." Computers and Geotechnics 37(3): 413-418.
[18]Bhuiyan, M. Z. A., Wang, G. and Cao, J. (2012), "Sensor placement with multiple objectives for structural health monitoring in WSNs", IEEE 9th Int. Conf. High Perform. Comput. Commun. (HPCC), pp. 699-706
[19]M. J. Chae, et al. (2012), Development of a wireless sensor network system for suspension bridge health monitoring, Automation in Construction, Vol. 21, pp.237-252.
[20]Shen-Haw Ju, Chun-Wei Feng, Hsun-Yi Huang (2013), “Integrating Finite Element Method with GAs to Estimate the Scour Depth of Bridge”, IACSIT International Journal of Engineering and Technology, Vol. 5, No. 4, pp. 462-465
[21]Xie, X., Guo, J. (2013), Zhang, H., Bie, R., Jiang, T., Sun, Y., Neural-Network based Structural Health Monitoring with Wireless Sensor Networks. In: 9th International Conference on Natural Computation and 10th International Conference on Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2013), Shenyang, China
[22]Prendergast, L. J., Hester, D., Gavin, K., & O’Sullivan, J. J. (2013). An investigation of the changes in the natural frequency of a pile affected by scour. Journal of Sound and Vibration, 332(25), 6685-6702.
[23]Prendergast, L. J., & Gavin, K. (2014). A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138-149.
[24]Kovačič, B., Kamnik, R., Štrukelj, A., & Vatin, N. (2015). Processing of Signals Produced by Strain Gauges in Testing Measurements of the Bridges. Procedia Engineering, 117, 795-801.
[25]Lin, T.-K., & Chang, Y.-S. (2017). Development of a real-time scour monitoring system for bridge safety evaluation. Mechanical Systems and Signal Processing, 82, 503-518.
[26]Bao, T., Andrew Swartz, R., Vitton, S., Sun, Y., Zhang, C., & Liu, Z. (2017). Critical insights for advanced bridge scour detection using the natural frequency. Journal of Sound and Vibration, 386, 116-133.
[27]葉祥海、呂良正、楊永斌、黃仲偉、劉醇宇、周俊杰、李肇豪,以微振量測探討鋼筋混凝土建築物之基本振動周期,內政部建築研究所報告,2000
[28]林智勇,利用微振實驗資料識別橋梁及建築物之動力參數,國立臺灣大學土木工程研究所,碩士論文,2004[29]李明儒,應用無線感測網路提高隧道防救災機制之研究,中原大學土木所,碩士論文,2006[30]林呈、高明哲、蔡榮峻,何鴻文,橋基沖刷災害與相關之維護管理-動態橋梁安全管理機制與碧利斯颱洪高屏大橋沖刷斷橋過程,臺灣公路工程,第 32 卷, 第 17-18 期,第 2~43 頁,2006[31]許進樹,改良的橋梁結構頻率決定程序,逢甲大學土木工程學研究所,碩士論文,2008[32]翁士晟,創新感測網路於橋梁監測系統之應用研究,國立臺灣大學土木工程學研究所,碩士論文,2009[33]陳憲廷,無線感測網路於即時結構安全監測系統之研發,國立臺灣大學電子工程學研究所,碩士論文,2010[34]徐力平等,國道3號濁水溪橋沖刷監測之研究,交通部臺灣區國道高速公路局委託研究報告,2010
[35]黃任篷,無線感測器網路應用於結構健康監測之系統開發,國立臺灣大學土木工程學研究所,碩士論文,2010[36]張達德,沖刷橋墩基礎的HHT振動頻譜特性分析與判讀研究,岩土力學,第 31 卷,第 7 期,2010
[37]陳建雲,橋梁與土壤互制分析應用於橋梁沖刷之研究,國立成功大學土木工程學研究所,碩士論文,2011[38]林其穎,橋梁沖刷監測預警系統建置之試驗研究,國立臺灣大學土木工程學研究所,碩士論文,2011[39]張鈞誠,利用振動頻率判別橋墩基礎裸露之可行性研究,國立交通大學土木工程學研究所,碩士論文,2011[40]王鴻諺,橋梁沖刷現地模擬與動力試驗,國立高雄大學土木工程學研究所,碩士論文,2011[41]李金翰,橋墩振動頻率作為封橋基準之研究,國立臺灣科技大學土木工程學研究所,碩士論文,2012[42]王南捷,無線感測網路應用於結構物監控震動之實作,國立台灣大學電子工程學研究所,碩士論文,2012[43]曾瀚霆,無線監測橋梁管理系統資料傳輸及測試之研究,國立臺灣大學土木工程學研究所,碩士論文,2012
[44]蔡鎮安,以結構振動訊號診斷橋梁受沖刷之安全性研究,國立臺灣大學土木工程學研究所,碩士論文,2012[45]羅俊雄、趙書賢、吳豐名,應用先進訊號處理技術於即時橋樑結構健康診斷-橋樑基礎沖刷監測與落橋預警,建國百年天氣分析預報與地震測報研討會,2011
[46]曾惠斌、朱聖浩、馮重偉、韓仁毓、林致廷,極端氣候下複合性災害防治之研究-整合 GPS 及通訊光電技術於橋梁防災監測平台研發計畫,行政院國家科學委員會,計畫編號 NSC 98-2625-M-006-005,2013
[47]許家豪,適用於結構物即時監測之無線感測網路技術資料壓縮之演算法實作,國立台灣大學電子工程學研究所,碩士論文,2013[48]林怡君,基礎沖刷深度對橋梁自然頻率的影響識別,國立成功大學土木工程學研究所,碩士論文,2013[49]林宥任,無線監測應用於橋梁管理之開發與實測,國立台灣大學土木工程學研究所,碩士論文,2014
[50]黃泓睿,無線監測系統應用於施工架災害預防之研究,國立台灣大學土木工程學研究所,碩士論文,2015