跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯瑞瑜
研究生(外文):Ruei-Yu Hou
論文名稱:無線感測技術應用於橋梁淘刷檢測之開發與實測
論文名稱(外文):Development and Implementation of Wireless Sensor Network for Detecting the Exposure of a Bridge Pile Foundation
指導教授:曾惠斌曾惠斌引用關係
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:橋梁沖刷結構健康診斷無線感測網路微振實驗橋梁監測
外文關鍵詞:Bridge ScouringStructure Health MonitoringWireless Sensor NetworkBridge MonitoringAmbient Vibration
相關次數:
  • 被引用被引用:4
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應氣候變遷對橋墩淘刷所增加的風險,應對重要橋梁實施安全性監測,本研究利用自製之無線監測網路 (Wireless Sensor Network,WSN) 系統,對所選橋梁進行微振試驗,以其監測值做快速傅立葉轉換(FFT)後可得到橋墩之自然頻率值,並搭配有限元素模型,以推估橋墩目前的沖刷深度。
近年來,開放原始碼(Open Source)風氣盛行,在軟硬體整合與軟體開發上已不如過去封閉,因此本研究採用 Arduino UNO 版進行測試,並自行整合無線傳輸模組、數位類比轉換器等,再以 MATLAB 作為示波器與資料處理用,取代過去受制於套裝之示波器、轉換器或專利保護等限制,期待能因此有更廣泛之使用。
以一壽橋為例,利用 WSN 收集訊號,並測試不同資料筆數、各位置傳輸穩定性,並利用快速傅立葉轉換與 Welch Method 將其轉換為頻譜訊號,即可自動出圖並儲存於電腦中,得即時之橋墩頻率,最後得出使用 Welch Method 有較佳之圖形辨識度。而在傳輸過程中,發現其傳輸量並不如產品規格所示,再改用不同傳輸模式後,在封包接收的穩定性已有大幅度的提升,所得一壽橋之主要自然頻率值為 1.897。
有限元素模型之建置參數,將以現地實測之橋梁自然頻率作為校正參數,並使用現地鑽探資料設定土壤等值彈簧,不同的最高彈簧深度即代表橋梁淘刷深度,所得之橋梁淘刷與自然頻率關係曲線,即可作為後續判識橋梁淘刷狀況之指標。
Recently, the climate change has brought great impact on flooding. In order to cope with the increasing risk of scouring caused by flooding, the present study has developed a self-made wireless monitoring network (WSN) system to monitor the bridge dynamic characteristics. This study proposed a new procedure of identifying the structural dynamic characteristics from ambient vibration test of the structure via Fast Fourier Transform(FFT) and Welch method analysis. The natural frequency accessed from the proposed procedure will be compared with the finite element model to estimate the current scouring depth. To build the finite element model, the natural frequency of bridge is used as calibration parameter and the N-value from Geo-technical investigation is used to set equivalent soil spring.
To avoid the limitation of patent and software package, the open sources, are used in this study, such as Arduino UNO, wireless transmission module and digital to analog converter are used in this study. Meanwhile, MATLAB is served as an oscilloscope and the data processing tool. This WSN system is expected to be widely used in scouring monitoring of bridge.
For the field-implementation, the WSN system is installed on Yishou Bridge for testing the transmission stability and comparing 2 types of Spectrum analysis methods. The study result reveals that the main natural frequency of Yishou Bridge is 1.897 Hz. There are three main result in this research. First, The API transmission mode has shown its effect on enhancing the success rate of transmission. Second, Welch method improves the shortcoming of the FFT by splitting the signal and overlapping segments to reduce the noise. Third, the relationship curve of scouring and natural frequency would be used as an indicator to estimate the bridge scouring situation.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構與流程 3
Chapter 2 文獻回顧 4
2.1 無線感測網路 4
2.1.1 無線感測網路架構概述 4
2.1.2 無線通訊協定 7
2.2 橋梁振動量測 9
2.2.1 橋梁動力行為試驗 9
2.2.2 訊號處理方法 10
2.3 橋梁自然頻率與淘刷關係 12
2.3.1 結構自然頻率 12
2.3.2 淘刷對自然頻率影響之研究 13
Chapter 3 無線感測系統開發 15
3.1 無線感測節點開發 15
3.1.1 介面控制板 15
3.1.2 傳輸模組 19
3.1.3 數位類比轉換器 20
3.1.4 加速計 21
3.2 訊號分析系統開發 22
3.2.1 資料傳輸方法比較 22
3.2.2 資料蒐集方法沿革 23
3.2.3 快速傅立葉轉換(FFT) 25
3.2.4 Welch Method 26
3.3 系統運作流程圖 29
3.4 小結 30
Chapter 4 無線感測系統實測 31
4.1 室內校正實驗 31
4.2 測定橋梁之選擇與介紹 34
4.3 現地實測成果 37
4.3.1 無線感測系統傳輸距離實測 37
4.3.2 無線感測系統取樣數實測 37
4.3.3 訊號優化成效 39
4.4 小結 43
Chapter 5 有限元素模型建置 44
5.1 Sap2000基本介紹 44
5.2 有限元素模型建置 45
5.2.1 橋墩建置 45
5.2.2 預力梁建置 45
5.2.3 橫隔梁建置 46
5.2.4 橋面版建置 47
5.2.5 基樁建置 48
5.2.6 土壤束制條件 49
5.2.7 橡膠支承墊模擬 51
5.2.8 模型建置流程圖 53
5.3 橋梁淘刷模擬 54
5.4 淘刷與自然頻率分析之標準流程 55
5.5 小結 56
Chapter 6 結論與建議 57
6.1 結論 57
6.2 後續研究與建議 58
REFERENCES 59
[1]Arduino 官網:https://www.arduino.cc/, 2017.5.
[2]Digi 官網:http://www.digi.com/, 2017.5.
[3]Institute of Electrical and Electronics Engineers 802.15 WPANTM Task Group 4 (TG4), http://www.ieee802.org/15/pub/TG4.html, 2012
[4]W.H. Liao, et al. (2001),Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films, Journal of Intelligent Material Systems and Structures, Vol. 12, pp.331
[5]I.F. Akyildiz, et al. (2002), Wireless sensor networks: a survey, Computer Networks, Vol. 38, Issue 4, pp.393-422.
[6]Jerome P. Lynch, et al. (2003), Field validation of a wireless structural monitoring system on the Alamosa Canyon Bridge, Smart Structures and Materials, Vol. 5057
[7]Ning Xu, et al. (2004), A Wireless Sensor Network for Structural Monitoring, SenSys’04, Baltimore, Maryland, USA.
[8]Sinem Coleri Ergen (2004), ZigBee/IEEE 802.15.4 Summary
[9]Ou, J. P., et al. (2005), Health dynamic measurement of tall building using wireless sensor network, Smart Structures and Materials 2005- Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA.
[10]N. Kurata, et al. (2005), Risk monitoring of buildings with wireless sensor networks, Structural Control and Health Monitoring, Vol. 12, pp.315-327
[11]J. P. Ou, et al. (2005), Health dynamic measurement of tall building using wireless sensor network, Smart Structures and Materials 2005- Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA.
[12]C.R. Farrar, et al. (2006), Sensor network paradigms for structural health monitoring, Structural Control and Health Monitoring, Vol. 13, pp.210-225
[13]Y. Gao, et al.(2006),Distributed computing strategy for structural health monitoring, Structural Control and Health Monitoring, Vol. 13, pp.488-507
[14]Choi, H., Choi, S., Cha, H. (2008), "Structural Health Monitoring System based on Strain Gauge Enabled Wireless Sensor Nodes", INSS: International Conference on Networked Sensing Systems, Kanazawa, Japan, June 17-19
[15]IEEE Std 802.15.4dTM (2009), IEEE Computer Society, Amendment 3
[16]Cho, S., Jo, H., Jang, S.A., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr., B.F., and Seo, J. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: data analyses," Smart Structures and Systems, Vol. 6 (5-6), 461-480.
[17]Kaya, A. (2010). "Artificial neural network study of observed pattern of scour depth around bridge piers." Computers and Geotechnics 37(3): 413-418.
[18]Bhuiyan, M. Z. A., Wang, G. and Cao, J. (2012), "Sensor placement with multiple objectives for structural health monitoring in WSNs", IEEE 9th Int. Conf. High Perform. Comput. Commun. (HPCC), pp. 699-706
[19]M. J. Chae, et al. (2012), Development of a wireless sensor network system for suspension bridge health monitoring, Automation in Construction, Vol. 21, pp.237-252.
[20]Shen-Haw Ju, Chun-Wei Feng, Hsun-Yi Huang (2013), “Integrating Finite Element Method with GAs to Estimate the Scour Depth of Bridge”, IACSIT International Journal of Engineering and Technology, Vol. 5, No. 4, pp. 462-465
[21]Xie, X., Guo, J. (2013), Zhang, H., Bie, R., Jiang, T., Sun, Y., Neural-Network based Structural Health Monitoring with Wireless Sensor Networks. In: 9th International Conference on Natural Computation and 10th International Conference on Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2013), Shenyang, China
[22]Prendergast, L. J., Hester, D., Gavin, K., & O’Sullivan, J. J. (2013). An investigation of the changes in the natural frequency of a pile affected by scour. Journal of Sound and Vibration, 332(25), 6685-6702.
[23]Prendergast, L. J., & Gavin, K. (2014). A review of bridge scour monitoring techniques. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138-149.
[24]Kovačič, B., Kamnik, R., Štrukelj, A., & Vatin, N. (2015). Processing of Signals Produced by Strain Gauges in Testing Measurements of the Bridges. Procedia Engineering, 117, 795-801.
[25]Lin, T.-K., & Chang, Y.-S. (2017). Development of a real-time scour monitoring system for bridge safety evaluation. Mechanical Systems and Signal Processing, 82, 503-518.
[26]Bao, T., Andrew Swartz, R., Vitton, S., Sun, Y., Zhang, C., & Liu, Z. (2017). Critical insights for advanced bridge scour detection using the natural frequency. Journal of Sound and Vibration, 386, 116-133.
[27]葉祥海、呂良正、楊永斌、黃仲偉、劉醇宇、周俊杰、李肇豪,以微振量測探討鋼筋混凝土建築物之基本振動周期,內政部建築研究所報告,2000
[28]林智勇,利用微振實驗資料識別橋梁及建築物之動力參數,國立臺灣大學土木工程研究所,碩士論文,2004
[29]李明儒,應用無線感測網路提高隧道防救災機制之研究,中原大學土木所,碩士論文,2006
[30]林呈、高明哲、蔡榮峻,何鴻文,橋基沖刷災害與相關之維護管理-動態橋梁安全管理機制與碧利斯颱洪高屏大橋沖刷斷橋過程,臺灣公路工程,第 32 卷, 第 17-18 期,第 2~43 頁,2006
[31]許進樹,改良的橋梁結構頻率決定程序,逢甲大學土木工程學研究所,碩士論文,2008
[32]翁士晟,創新感測網路於橋梁監測系統之應用研究,國立臺灣大學土木工程學研究所,碩士論文,2009
[33]陳憲廷,無線感測網路於即時結構安全監測系統之研發,國立臺灣大學電子工程學研究所,碩士論文,2010
[34]徐力平等,國道3號濁水溪橋沖刷監測之研究,交通部臺灣區國道高速公路局委託研究報告,2010
[35]黃任篷,無線感測器網路應用於結構健康監測之系統開發,國立臺灣大學土木工程學研究所,碩士論文,2010
[36]張達德,沖刷橋墩基礎的HHT振動頻譜特性分析與判讀研究,岩土力學,第 31 卷,第 7 期,2010
[37]陳建雲,橋梁與土壤互制分析應用於橋梁沖刷之研究,國立成功大學土木工程學研究所,碩士論文,2011
[38]林其穎,橋梁沖刷監測預警系統建置之試驗研究,國立臺灣大學土木工程學研究所,碩士論文,2011
[39]張鈞誠,利用振動頻率判別橋墩基礎裸露之可行性研究,國立交通大學土木工程學研究所,碩士論文,2011
[40]王鴻諺,橋梁沖刷現地模擬與動力試驗,國立高雄大學土木工程學研究所,碩士論文,2011
[41]李金翰,橋墩振動頻率作為封橋基準之研究,國立臺灣科技大學土木工程學研究所,碩士論文,2012
[42]王南捷,無線感測網路應用於結構物監控震動之實作,國立台灣大學電子工程學研究所,碩士論文,2012
[43]曾瀚霆,無線監測橋梁管理系統資料傳輸及測試之研究,國立臺灣大學土木工程學研究所,碩士論文,2012
[44]蔡鎮安,以結構振動訊號診斷橋梁受沖刷之安全性研究,國立臺灣大學土木工程學研究所,碩士論文,2012
[45]羅俊雄、趙書賢、吳豐名,應用先進訊號處理技術於即時橋樑結構健康診斷-橋樑基礎沖刷監測與落橋預警,建國百年天氣分析預報與地震測報研討會,2011
[46]曾惠斌、朱聖浩、馮重偉、韓仁毓、林致廷,極端氣候下複合性災害防治之研究-整合 GPS 及通訊光電技術於橋梁防災監測平台研發計畫,行政院國家科學委員會,計畫編號 NSC 98-2625-M-006-005,2013
[47]許家豪,適用於結構物即時監測之無線感測網路技術資料壓縮之演算法實作,國立台灣大學電子工程學研究所,碩士論文,2013
[48]林怡君,基礎沖刷深度對橋梁自然頻率的影響識別,國立成功大學土木工程學研究所,碩士論文,2013
[49]林宥任,無線監測應用於橋梁管理之開發與實測,國立台灣大學土木工程學研究所,碩士論文,2014
[50]黃泓睿,無線監測系統應用於施工架災害預防之研究,國立台灣大學土木工程學研究所,碩士論文,2015
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top