跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家漢
研究生(外文):Chia-Han Chen
論文名稱:以振動台試驗探討液化地盤中單樁受震樁土互制關係
論文名稱(外文):Pile-soil interaction of a single pile in liquefiable ground during 1-g shaking table tests
指導教授:翁作新翁作新引用關係陳正興陳正興引用關係葛宇甯
指導教授(外文):Tzou-Shin UengCheng-Hsin ChenLouis, Ge
口試日期:2017-07-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:197
中文關鍵詞:振動台試驗土壤液化樁土互制作用側潰土壤勁度
外文關鍵詞:Shaking table testsoil liquefactionsoil-pile interactionpilelateral spreadingsoil stiffness
相關次數:
  • 被引用被引用:4
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用國家地震工程研究中心的振動台與大型雙軸向剪力試驗盒進行1-g飽和砂土中模型樁振動台試驗,探討可能液化地盤中單樁受震之樁土互制作用。模型樁固定於剪力盒底部以模擬基樁貫入岩盤或是埋置於堅實地層之受振行為,並在樁頂裝設質量塊模擬上部結構載重之反應。另外在樁身黏貼應變計以及微型加速度計量測基樁受振之反應,同時也對於土壤試體之位移、加速度與孔隙水壓反應進行連續監測,以完整紀錄地盤受振過程之動態反應。
為探討上部結構與地盤變位作用於樁身之效應以及液化後樁土互制作用行為,本研究進行水平地盤與傾斜地盤之振動台試驗。根據試驗結果顯示樁基礎受振反應及樁土互制作用,主要受土層與基樁之顯著頻率、上部結構慣性力及地震之頻率分布的影響。此外,本研究利用雙向剪力試驗盒之機制與垂直坡面方向的輸入運動方式,確實能分別考量地盤側潰與上部結構物慣性對樁基礎的作用力。
本研究採用時頻分析與系統識別方法判識試驗過程中樁土系統頻率變化,探討地盤受震期間樁土系統頻率與超額孔隙水壓變化之關係,並提出簡化數學模式評估樁土系統頻率與水平地盤反力係數之關聯性,進而建立正規化水平地盤反力係數因超額孔隙水壓激發而折減的關係。其結果顯示在液化期間,土壤勁度幾乎消失,但隨著超額孔隙水壓消散,土壤勁度會漸次回復。
Series of shaking table tests on a model pile within a saturated sand specimen using a large bi-axial laminar shear box were conducted at the National Center for Research on Earthquake Engineering (NCREE), to study the soil-pile interaction in a liquefiable ground during earthquake. The shaking table tests included a single pile within the level ground and inclined ground with a slope angle of 2。. The pile tip was fixed at the bottom of the shear box to simulate the condition of a pile foundation embedded in a firm stratum. The pile top was mounted with steel disks to simulate the superstructure. In addition, strain gauges and mini-accelerometers were placed on the pile surface to observe the behavior of the pile under shaking. The near- and far-field soil responses, including pore water pressure changes, accelerations, and settlements were also measured. According to analyses of the dynamic responses of the soil-pile system, it was found that the behavior of the model pile and soil-pile interaction under shaking was affected by the dynamic characteristics of the piles and the surrounding soil, the mass of the superstructure and the frequency content of earthquake shakings. In addition, the kinematic and inertial loadings on the model pile due to lateral spreading during shaking can be evaluated independently with the input motion imposed in the direction perpendicular to the slope direction.

These experimental data were analyzed to identify the time-dependent predominant frequency of soil-pile system during generation and dissipation of excess pore water pressure under the shaking by performing time-frequency analyses and system identification. The relation between the predominant frequency of soil-pile system and the coefficient of horizontal subgrade reaction can be obtained by the proposed mathematical model of soil-pile system. Hence, the relation between the normalized coefficient of horizontal subgrade reaction and the pore pressure ratio was established based on the experimental data and the proposed mathematical model of soil-pile system. It can be seen that the stiffness of the soil almost vanished during the period of liquefaction and the stiffness of the soil would increase with the dissipation of pore water pressure. The trend of the stiffness reduction is found close to the reduction of soil parameter proposed by Architectural Institute of Japan (AIJ, 1998).
誌 謝 i
摘要 iii
Abstract v
目錄 vii
表目錄 x
圖目錄 xii
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 2
1.3 研究內容與架構 3
第二章 文獻回顧 5
2.1 土壤液化 5
2.2 液化土層中樁基礎受震行為 6
2.2.1液化土壤中樁基礎之受力行為 6
2.2.2 液化土壤中樁基礎破壞機制 7
2.3 液化土壤中樁基礎動態物理模型試驗 8
2.3.1大型振動台模型樁試驗 9
2.3.2 離心機振動台模型樁試驗 11
2.3.3現地人工震源基樁動態試驗 12
2.4液化土壤-樁基礎-上部結構互制分析方法 12
2.4.1 擬靜態分析法 13
2.4.2 動態數值分析法 14
2.4.2.1 非耦合分析 14
2.4.2.2 耦合分析 15
2.5現行考慮地盤液化之樁基礎設計方法 16
2.5.1 彈性分析模式 16
2.5.2 非線性擬靜態分析 17
2.5.2.1日本道路橋示方書(2002)規定 17
2.5.2.2 Tokimatsu(2003)方法 18
2.6超額孔隙水壓引致土壤參數折減之研究 19
2.6.1 室內實驗與現地量測相關研究 19
2.6.2 現行土壤參數折減相關規範 21
第三章 飽和砂土中模型樁振動台試驗 45
3.1 振動台試驗規劃 45
3.2 試驗設備與試體準備 46
3.2.1 地震模擬振動台 46
3.2.2 雙軸向多層剪力試驗盒 46
3.2.3 固定式大型砂土霣落箱 47
3.2.4 資料擷取系統與量測儀器 48
3.2.5 模型樁與砂土試體準備 49
3.3 水平地盤中模型樁振動台試驗 50
3.3.1 量測儀器配置 51
3.3.2 試驗內容 52
3.4傾斜地盤中模型樁振動台試驗 53
3.4.1 量測儀器配置 53
3.4.2 試驗內容 54
3.5試驗流程與準備工作 54
3.5.1 試驗準備工作 54
3.5.2試體準備流程 55
3.5.3 振動台試驗 56
3.5.4 振動台試驗完成之後續處理 57
第四章 水平地盤振動台試驗結果與分析 83
4.1 空箱中基樁振動台試驗 83
4.2 水中基樁振動台試驗 84
4.3 飽和砂土中基樁振動台試驗 85
4.3.1微小振動下樁基礎動態行為 85
4.3.2 液化土壤中樁基礎受震反應 86
4.4 小結 91
第五章 傾斜地盤振動台試驗結果與分析 105
5.1 空箱中模型樁振動台試驗 105
5.2 飽和砂土中基樁振動台試驗 106
5.2.1 微小振動下樁基礎動態行為 106
5.2.2 液化土中樁基礎受震反應 107
5.2.3 結構系統共振反應 111
5.3 小結 114
第六章 液化地盤中樁土系統頻率之時變性 127
6.1 時頻分析與系統識別方法 127
6.1.1時頻分析 127
6.1.2系統識別方法 128
6.2 振動台試驗案例分析 128
6.2.1水平地盤試驗案例 129
6.2.2傾斜地盤試驗案例 132
6.3 超額孔隙水壓力與樁土系統頻率變化之關係 134
6.4 小結 136
第七章 由樁土系統頻率探討地盤中土壤勁度之變化 151
7.1簡化數學模型 151
7.1.1 簡化數學模式之建立 151
7.1.2 簡化數學模式與理論解之比較 159
7.1.3 簡化數學模式與數值分析比較 163
7.2 超額孔隙水壓與水平土壤反力係數折減之關係 165
7.2.1 簡化數學模式估算水平土壤反力係數 165
7.2.2 有限元素分析計算水平土壤反力係數 166
7.2.3 水平土壤反力係數與超額孔隙水壓之關係 168
7.2.4 水平地盤與傾斜地盤案例分析比較 169
7.3 正規化水平土壤反力係數折減關係比較 170
7.4 小結 171
第八章 結論與建議 189
8.1 結論 189
8.2 建議 191
參考文獻 193
1.Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, 257-276.
2.Seed, H. B.(1979), “Soil Liquefaction and Cyclic Mobility Evalution for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, 105, GT2, 201-255.
3.National Research Council. (1985),” Liquefaction of Soils During Earthquakes,” Washington, DC: The National Academies Press.
4.陳正興、陳家漢,「地震引致的土壤液化與側潰現象」,科學發展,第498期,第12-17頁,科技部,中國民國103年6月。
5.Tokimatsu, K. and Asaka, Y. (1998) “Effects of Liquefaction-Induced Ground Displacement on Pile Performance in the 1995 Hyogoken-Nambu Earthquake,” Special Issue of Soils and Foundations, 2, 163-178.
6.Abdoun, T., and Dobry, R., (2002) “Evaluation of Pile Foundation Response to Lateral Spreading,” Soil Dynamics and Earthquake Engineering, 22, 1051-1058.
7.黃俊鴻(2000),「液化地盤中樁基礎之耐震設計」,地工技術,第82期,第65-78頁。
8.Tokimatsu, K., Mizuno, H. and Kakurai, M. (1996) ”Building damage associated with geotechnical problems, Soils and Foundations, “ Special Issue, 219-234.
9.Bhattacharya, S. (2003) “Pile Instability during Earthquake Liquefaction.”PhD thesis, Department of Civil Engineering, University of Cambridge, UK.
10.Lin, S.S., Tseng, Y.J., Chiang, C.C., and Hung, C.L., (2005)“Damage of Piles Caused by Lateral Spreading-Back Study of Three Cases,”Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, GSP 145, 121-133.
11.Haldar, S. andBabu, G. L. (2010),” Failure Mechanisms of Pile Foundations in Liquefiable Soil: Parametric Study”, International Journal of Geomechanics, 10, 2, 74-84.
12.Ishihara, K., and Cubrinovski, M., (1998) "Performance of Large-diameter Piles Subject to Lateral Spreading of Liquefied Deposits", Proceeding of Thirteenth Southeast Asian Geotechnical Conference, Taipei, Taiwan, ROC., 1-14.
13.Yao, S., Kobayashi, K., Yoshida, N., and Matsuo, H., (2004) “Interactive Behavior of Soil-Pile-Superstructure System in Transient State to Liquefaction by means of Large Shake Table Tests,” Soil Dynamics and Earthquake Engineering, 24, 397-409.
14.Tokimatsu, K., Suzuki, H., and Sato, M. (2004) “Influence of Inertial and Kinematic Components on Pile Response during Earthquakes,” The 11th International Conference on Soil Dynamics & Earthquake Engineering and The 3rd International Conference on Earthquake Geotechnical Engineering, University of California, Berkeley, USA, 768-775.
15.Tokimatsu, K., Suzuki, H., and Sato, M. (2005) “Effect of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundations,” Soil Dynamics and Earthquake Engineering, 25, 753-762.
16.Tokimatsu, K. and Suzuki, H. (2009) “Seismic Soil-Pile-Structure Interaction Based on Large Shaking Table Tests,” IS-Tokyo 2009, International Conference on Performance-Based Design in Earthquake Geotechnical Engineering— from case history to practice —Tsukuba, Japan, June 15-18, 77-104.
17.Cubrinovski, M., Kokusho, T., and Ishihara, K., (2006). “Interpretation from Large-scale Shake Table Tests on Piles Undergoing Lateral Spreading in Liquefied Soils,” Journal of Soil Dynamics and Earthquake Engineering, ASCE, 26, 2-4, 275-286.
18.Wilson, D. W. (1998). “Soil–pile–superstructure Interaction at Soft and Liquefying Soil Sites.” Ph.D. dissertation, University of California, Davis, California, USA.
19.Brandenberg, S. J., Boulanger, R. W., Kutter, B. L., and Chang, D. (2005)” Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131, 11, 1378-1391.
20.Matlock, H. (1970) “Correlations for design of laterally loaded piles in soft clay.” Proceeding, II Offshore Technical Conference, 1, Houston, 577-594.
21.Abdoun, T., Dobry, R.D., O’Rourke, T., and Goh, S.H., (2003) “Pile Response to Lateral Spreads: Centrifuge Modeling,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129, 10, 869-889.
22.Kagawa, T., Sato, M., Minowa, C., Abe, A., and Tazoh, T. (2004). “Centrifuge Simulations of Large-scale Shaking Table Tests: Case Studies,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130, 7, 663-672.
23.Knappett, J. A. and Madabhushi, S. P. G. (2009) ” Influence of axial load on lateral pile response in liquefiable soils. Part I: physical modelling,” Geotechnique, 59, 7, 571-581.
24.Rollins, K. M., Gerber, T. M., Lane, J. D., and Asford, S.A. (2005) “Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131, 1, 115-125.
25.Chang, W.J., Chen, J.F. and Ho, H.C. (2010) ” Large Scale Model Test for Pile-supported Wharf in Liquefied Sand,” The Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor I.M. Idress, Paper No. 1.09, San Diego, Californica, USA, May 24-29.
26.Wang, S. -T., and Reese, L. C.,(1998)”Design of Pile Foundation in Liquefied Soils,” Geotechnical Earthquake Engineering and Soil Dynamics III, GSP No. 75, 2, ASCE, 1331-1343.
27.Liu, L., and Dobry, R., (1995) “Effect of liquefaction on lateral response of piles by centrifuge model tests,” National Center for Earthquake Engineering Research(NCEER) Bolletin Annual 9(1), 7-11.
28.Liyanapathirana, D.S. and Poulos, H.G., (2005) “Pseudostatic Approach for Seismic Analysis of Piles in Liquefying Soil,” Journal of Geotechnical and Geoenvironmental Engineering, 131, 12, 1480-1487.
29.Boulanger, R.W., Curras, C. J., Kutter, B.L., Wilson, D.W., and Abghari, A. (1999), “Seismic Soil-Pile-Structure Interaction Experiments and Analyses, “Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125, 9, 750-759.
30.Klar, A. and Frydmn, S. (2002), “Three-Dimensional Analysis of Lateral Pile Response using Two-Dimensional Explicit Numerical Scheme,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 128, 9, 775-784.
31.Martin, G.R., Finn, W.D.L. and Seed, H.B.,(1975) “Fundamentals of liquefaction under cyclic loading,” Proc. ASCE, 101, GT5, 423-438.
32.Lin, S.S., Tseng, Y.J., Liao, J.C, Wang, C.H. and Lee, W.F. (2006) “Ground Lateral Spread Effects on Single Piles Using Uncoupled Analysis Method,”Journal of GeoEngineering, 1, 2, 51-62.
33.Badoni, D. and Makris, N. (1996). “Nonlinear Response of Single Piles under Lateral Inertial and Seismic Loads.” Soil Dynamics and Earthquake Engineering, 15, 29-43.
34.Kagawa, T., Taji, Y., Sato, M., and Minowa, C. (1997) "Soil-Pile-Structure Interaction in Liquefying Sand from Large-scale Shaking-Table Tests and Centrifuge Tests," Seismic Analysis and Design for Soil-pile-structure Interaction, GSP 70, ASCE, 69-84.
35.Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2002). “Cyclic 1D-An Internet-based Nonlinear Finite Element Program for Execution of One-dimensional Site Amplification and Liquefaction Simulations.” University of California at San Diego, http://cyclic.ucsd.edu/index.html for details.
36.Chang, D.W., Lin, B.S., Yen, C.H. and Cheng, S.H. (2008) "Comparision of FD Solutions Using Static and Dynamic Winkler’s Model and Lateral Spread Induced Earth pressures for Piles," Proceedings of Geotechnical Earthquake Engineering and Soil Dynamics IV, Sacramento, USA.
37.張紹綸(2008),「孔隙水壓模式應用於液化影響樁基礎之波動方程分析」,碩士論文,淡江大學土木工程學系。
38.Biot, M.A., (1962) “Mechanics of deformation and acoustic propagation in porous media,” Journal of Appied Physics, 33, 4, 1482–1498.
39.Zienkiewicz, O. C., Chan, A. H. C., Pastor M., Paul, D. K., and Shiomi T. (1990), “Static and dynamic behaviour of geometerials – a rational approach to quantitative solutions: I. fully saturated problems,” Proceedings of the Royal Society of London, A429, 285-309.
40.Oka, F., Yashima, A., Shibata, T., Kato, M., and Uzuoka, R., (1994). “FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model”, Applied Scientific Research, 52, 209-245.
41.Yang, Z., Elgamal, A., Abdoun, T., and Lee, C.J. (2001) “A Numerical Study of Lateral Spreading Behind a Caisson Type Quay,” The Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Paper No. 7.04, Missouri, USA, Mar 26-31.
42.Yang, Z. (2000). “Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction,” Ph.D. Dissertation, Dept. of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY.
43.盧之偉、洪璋億、賴信成(2010),「以有效應力法探討因大地震所引起土壤液化造成樁基礎破壞之實例分析」,地工技術,第123期,第59-68頁。
44.Oka, F., Yashima, A., Tateishi, A., Taguchi, Y. and Yamashita, S., (1999). “A cyclic elasto-plastic constitutive model for sand consideing a plane-strain depednece of the shear modulus”, Geotechnique, 49(5), 2661-2680.
45.陳正興、翁作新、黃俊鴻、林三賢、李維峰、蘇鼎鈞、謝旭昇、簡文郁、陳銘鴻、王淳讙、楊鶴雄、洪菁隆(2005),「土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究(2/2)」,交通部報告。
46.日本道路協會(主編)(2002),「道路橋示方書‧同解說-V耐震設計編」,日本道路協會,日本東京。
47.Tokimatsu, K. (2003). “Behavior and Design of Pile Foundations Subjected to Earthquakes.” Keynote Speech, 12th Asia Regional Conference on Soil Mechanics and Geotechnical Engineering, Singapore, 2, 1065-1096.
48.岩崎敏男、常田賢一、木全俊雄(1981),「地震時における砂質地盤の液状化判定法と耐震設計への適用に関する研究」,土研資料第1729號,日本建設省土木研究所,日本筑波。
49.江國良(1990),「飽和砂土受反覆荷重作用後之不排水受剪行為」,台灣大學土木工程研究所碩士論文。
50.Pradhan, T., Kiku, H. and Sato, K. (1995). “Effect of fines content on behavior of sand during the process to liquefaction”. Earthquake Geotechnical Engineering, Ishihara (ed.), Balkema, Rotterdam, 823-828.
51.Lee, C.J., Wang, C.R., Wei, Y.C. and Hung, W.Y. (2011). “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bulletin of Earthquake Engineering, Vol. 10, No. 2, 401-420.
52.Kostadinova, M.V., and Towhata, I. (2002). “Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 4, 309-322.
53.Kramer, S.L., Hartvigsen, A.J., Sideras, S.S., Ozener, P.T. (2011). “Site response modeling in liquefiable soil deposits,” 4th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion, Santa Barbara, CA.
54.內政部 (2016),「建築技術規則建築構造編」。
55.內政部 (2001),「建築物基礎構造設計規範」。
56.日本道路協會(主編)(2002),「道路橋示方書‧同解說-V耐震設計編」,日本道路協會,日本東京。
57.日本建築學會(主編)(1988),「建築基礎構造設計指針」,日本建築學會,日本東京
58.內政部 (2011),「建築物耐震設計規範及解說」。
59.日本道路協會(主編)(1990),「道路橋示方書‧同解說-V耐震設計編」,日本道路協會,日本東京。
60.翁作新,王明輝,陳銘鴻,何文欽(2001),「大型振動台剪力盒土壤液化試驗(I)-大型二維剪力盒之研發」,國家地震工程研究中心,NCREE-01-011,臺北。
61.Ueng, T.S., Wang, M.H., Chen, M.H., Chen, C.H., and Peng, L.H. (2006) ” A Large Biaxial Shear Box for Shaking Table Tests on Saturated Sand,” Geotechnical Testing Journal, ASTM, 29, 1-8.
62.翁作新,陳家漢,彭立先,李偉誠(2003),「大型振動台剪力盒土壤液化試驗(II)-大型砂試體之準備與振動台初期試驗」,國家地震工程研究中心,NCREE-03-042,臺北。
63.Ueng, T. S., Wu, C. W., Cheng, H. W., Chen, C.H., (2010) “Settlements of saturated clean sand deposits in shaking table tests” Soil Dynamics and Earthquake Engineering, 30 (1-2), 50-60.
64.Chiou, J.S., Lin, C.L., Chen, C.H., (2014),” Exploring influence of sectional flexural yielding on experimental pile response analysis and applicability of distributed plastic hinge model in inelastic numerical simulation for laterally loaded piles,” Computers and Geotechnics, 56, 40-49.
65.Chapra, S.C. and Canale, R.P. (2010) “Numerical Methods for Engineers” The McGraw-Hill Companies, Inc., 6th edition, part V, 439-584.
66.Beightler, C.S., Phillips, D.T., Wilde, D.J., (1979) “Foundations of optimization” Prentice-Hall International Inc, 310–316.
67.Haigh S., Madabhushi, G., (2005) “The effects of pile flexibility on pile-loading in laterally spreading slopes” Seismic performance and simulation of pile foundations in liquefied and laterally spreading ground. Vol I, 24-37.
68.Dobry, R., Abdoun, T., O’Rourke, T.D., Goh, S.H. (2003) “Single piles in lateral spreads: field bending moment evaluation” Journal of Geotechnical and Geoenvironmental Engineering, 129 (10), 879-889.
69.Mallat, S. (1999) “A Wavelet Tour of Signal Processing,” Academic Press, 2nd edition.
70.Mallat, S.(2009) “ A Wavelet Tour of Signal Processing: The Sparse Way,” Academic Press, 3rd edition, 2009.
71.Debnath, L. (2000) “Wavelet Transforms and Time- Frequency Signal Analysis,” Birkhäuser, Boston.
72.Cohen, L.(1995) “Time-Frequency Analysis,” Prentice-Hall, New York.
73.葉祥海、呂良正、楊永斌、黃仲瑋、劉醇宇、周俊杰、李兆豪,(2000),以微震量測探討鋼筋混凝土構造建築物之基本振動周期,內政部建研所研究計畫報告,MOIS A32090。
74.Clough, R.W. and Penzien, J. (2003) “Dynamics of structures” Computer and Structures Inc., 3rd edition.
75.Hibbeler, R. C. (2012) “Structural Analysis” Prentice Hall, 8th edition.
76.Chang, Y. L.(1937) “Discussion on Lateral pile-loading tests,” by Feagin. Trans., ASCE, Paper No. 1959, 272-278.
77.SAP2000 (1997) “Analysis Reference: Volume I-III,” Berkeley California, U.S.A.
78.李森枏,SPA2000 入門與工程上之應用,科技圖書公司,2002。
79.陳家漢、翁作新(2010),「可能液化地盤中模型樁振動台試驗 」,地工技術,第125期,第35-44頁。
80.Meyerhof, G.G., (1956) "Penetration Tests and Bearing Capacity of Cohesionless Soils," Journal of the Soil Mechanics Division, ASCE, 82, SM1, 1-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top