跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周肇昱
研究生(外文):Jay-Yu Chou
論文名稱:利用卡氏濾波器組進行感測器受損評估與結構損傷識別
論文名稱(外文):Applications of a Bank of Kalman Estimators to Sensor Fault Detection and Structural Damage Detection
指導教授:張家銘張家銘引用關係
指導教授(外文):Chia-Ming Chang
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:178
中文關鍵詞:卡爾曼濾波器組自回歸模型系統識別結構健康監測感測器損傷識別地震損傷損傷指數
外文關鍵詞:sensor fault detectionautoregressive modelinga bank of Kalman estimatorsdamage detectionstructural health monitoringseismic damagestatistical damage index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,為了延長結構的使用壽命及保護結構免於遭受下次災害的破壞,結構健康監測越來越受工程界重視。大部份結構健康監測都是使用感測器量測訊號,藉由感測器所提供之資料與訊息進行結構健康監測,因此感測器的工作性會直接影響到結構健康監測的分析結果。本研究目的之一為提出一套新的方法進行感測器的故障判別。本研究考量三種訊號錯誤:訊號偏差 (additive fault)、訊號放大 (multiplicative fault)、訊號偏移 (slowly drifting fault)。首先將量測訊號建立自回歸模型 (Auto-Regressive model),接著將此模型轉換成單一卡爾曼濾波器,由於此濾波器是利用全訊號源作為輸入,因此藉由擷取部分卡爾曼濾波器做為可變輸入輸出之多組卡爾曼濾波器。利用建立完成的卡爾曼濾波器組來估計感測器的訊號資訊,藉由計算真實量測訊號和估計訊號的差值,可觀測出破壞的模式以及發生時間,達到即時的分析處理。此外,本方法也能對於重複出現的感測器錯誤進行診斷。本研究利用模擬及於實驗資訊以人工方式加上感測器故障進行判別。從模擬與實驗結果可得知此方法能夠有效的判別出損傷的感測器、損傷種類和損傷發生的時間,使感測系統能夠順利進行結構健康監測。
在保證感測器之工作性後,結構物之感測系統可進行結構健康診斷。本研究目的之二為利用卡爾曼濾波器組進行結構的損傷識別。該方法包括四個步驟,首先利用頻率域多輸入多輸出系統識別方法或時間域唯有輸出的自回歸模型之系統識別方法,建構結構模型;然後,將該結構模型轉換成全訊號輸入之卡爾曼濾波器分離該卡爾曼濾波器成多組卡爾曼濾波器,並估計結構兩節點間的相對反應,計算真實量測結構反應與估計反應之差值;最後,利用未損傷的結構指數與事件結束的結構事件指數進行比較,將該差值透過統計表示法,建立結構損傷指標,以利判斷結構桿件損傷程度。本研究利用模擬試驗來評估方法的可靠性,並在國家地震中心進行共三組結構試驗與實驗驗證,由模擬及實驗結果皆顯示此方法能成功判斷出結構損傷之發生、損傷之位置及損傷之程度。
Structural health monitoring has drawn great attention in the field of civil engineering in past two decades. These structural health monitoring methods evaluate structural integrity through high-quality sensor measurements of structures. Due to electronic deterioration or aging problems, sensors may yield biased signals. Therefore, the first objective of this study is to develop a fault detection method that identifies malfunctioning sensors in a sensor network before the structural health monitoring begins. This method exploits the autoregressive modeling technique to generate a bank of Kalman estimators, and the faulty sensors are then recognized by comparing the measurements with these estimated signals. Three types of faults are considered in this study including the additive, multiplicative, and slowly drifting faults. To assess the effectiveness of detecting faulty sensors, a numerical example is provided, while an experimental investigation with faults added artificially is studied. As a result, the proposed method is capable of determining the faulty occurrences and types.
The second objective of this study is to develop a structural health monitoring strategy for damage detection. Buildings may suffer serious damage when subjected extreme loadings such as strong winds and earthquakes. In seismic events, the error time histories between measured and estimated responses should contain the information of the structural deterioration, i.e., the locations, levels, and time of occurrences. Therefore, this study presents a new damage detection method based on prediction errors using a bank of Kalman estimators. A representative model of a building is derived from a frequency-domain multi-input, multi-output system identification method under ambient vibration prior to earthquakes. This model is then converted into a bank of estimators that calculate estimation errors. Damage is interpreted by statistical indices from these errors and allow determining the occurrence, levels, and locations of damage. A numerical example is presented to demonstrate the proposed damage detection method as well as to exhibit the damage detection performance. A series of experimental tests are carried out with this damage detection method implemented in various scenarios. The experimental verification shows that this proposed method is quite effective for seismic damage detection.
口試委員會審定書 #
ACKNOWLEDGEMENT i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 System Identification 2
1.2.2 Kalman Estimator and a Bank of Kalman Estimators 2
1.2.3 Sensor Fault Detection 4
1.2.4 Damage Detection 4
1.3 Objectives 6
Chapter 2 Sensor Fault Detection 8
2.1 Sensor Faults 8
2.1.1 Additive Fault 8
2.1.2 Multiplicative Fault 9
2.1.3 Slowly Drifting Fault 10
2.2 Auto-regressive Modeling 10
2.3 A Bank of Kalman Estimators 12
2.4 Fault detection 15
2.5 Numerical Example 20
2.5.1 Additive Fault 27
2.5.2 Multiplicative Fault 28
2.5.3 Slowly Drifting Fault 30
2.6 Experiment 31
2.6.1 Additive Fault 35
2.6.2 Multiplicative Fault 36
2.6.3 Slowly Drifting Fault 38
2.6.4 Re-occurring Faults 39
2.7 Chapter Summary 42
Chapter 3 Applications of a Bank of Kaman Estimators for Damage Detection of Structures Based on Input and Output Measurements 43
3.1 Damage Detection 44
3.2 Frequency Domain Identification of Multi-Input, Multi-Output Systems Considering Physical Relationships between Measured Variables 45
3.3 A Bank of Kalman Estimators 48
3.4 Damage Index Array 49
3.5 Numerical Example 52
3.5.1 Performance of Response Estimation 53
3.5.2 Damage Case with a weak Column at 1st Floor 57
3.6 Experimental Verification of Damage Detection 59
3.6.1 Advanced Earthquake Early Warning Research 59
3.6.1.1 Experimental Setup 60
3.6.1.2 Results of Kalman Estimators 63
3.6.1.3 Damage Detection Results – July 69
3.6.1.4 Damage Detection Results – December 3.6.2 Three-story Structures 104
3.6.2.1 Experimental Setup 104
3.6.2.2 Preliminary Discussion 107
3.6.2.3 Results of Kalman estimators 111
3.6.2.4 Damage Detection Results 112
3.6.3 Six-story Steel Frame 114
3.6.3.1 Experimental Setup 115
3.6.3.2 Preliminary Discussion 117
3.6.3.3 Results of Kalman estimators 120
3.6.3.4 Damage Detection Results 121
3.7 Chapter Summary 122
Chapter 4 Applications of a Bank of Kaman Estimators for Damage Detection of Structures Based on Output Only Measurements 124
4.1 Method 124
4.1.1 Procedure 125
4.2 Numerical Example 126
4.2.1 Performance of Response Estimation 127
4.2.2 Damage Case with a weak Column at 1st Floor . 128
4.3 Experimental Verification of Damage Detection 129
4.3.1 Advanced Earthquake Early Warning Research 129
4.3.1.1 Preliminary Discussion-July 129
4.3.1.2 Preliminary Discussion-December 139
4.3.1.3 Results of Kalman estimators 146
4.3.1.4 Damage Detection Results: July 151
4.3.1.5 Damage Detection Results: December 158
4.3.2 Six-floor Steel Frame 165
4.3.2.1 Results of Kalman Estimators 165
4.3.2.2 Damage Detection Results 166
4.4 Chapter Summary 168
Chapter 5 Conclusions and Recommendations 170
5.1 Conclusions 170
5.2 Future Studies 172
REFERENCE 173
[1] Akaike, H. (1974), “A new look at the statistical model identification," IEEE Transactions on Automatic Control, 19(6), 716-723.
[2] Akaike, H. (1977), “An objective use of Bayesian models", Annals of the Institute of Statistical Mathematics, 29, 9-20.
[3] Alkahe, J., Oshman, Y., and Rand, O. (2002), “Adaptive estimation methodology for helicopter blade structural damage detection”, Journal of Guidance, Control, and Dynamics, 25(6), 1049-1057.
[4] Abdelghani, M. and Friswll, M. (2007), “Sensor validation for structural systems with multiplicative sensor faults”, Mechanical Systems and Signal Processing, 21(2007), 270-279.
[5] Chang, C. M. and Spencer, B. F., Jr. (2013). “Hybrid system identification for high-performance structural control,” Engineering Structures, 56, 443-456.
[6] Fritzen, C.P., Seibold, S., and Buchen, D. (1995), “Application of filter techniques for damage detection in linear and nonlinear mechanical structures”, Proceedings of the 13th International Modal Analysis Conference, 1874.
[7] Feldman, M. and Seibold, S. (1997), “Damage diagnosis of rotors: application of hilbert transform and mutihypothesis testing”, Journal of Vibration and Control, 5, 421-442.
[8] Doebling, S.W., Farrar, C.R., and Prime, M.B. (1998). “A summary review of vibration-based damage identification methods,” The Shock and Vibration Digest, 30(2), 91-105.
[9] Haber, R. and Unbehauen, H. (1990). “Structure identification of nonlinear dynamic systems-A survey on input/output approaches,” Automatica, 26(4), 651-677.
[10] Hassiotis, S. and Jeong, G.D (1995). “Identification of stiffness reductions using natural frequencies,” J. Eng. Mech., 121(10), 1106-1113.
[11] Hanlon, P.D. and Maybeck, S.M. (2000), “Multiple-model adaptive estimation using a residual correlation Kalman filter bank”, IEEE Transactions on aerospace and electronic systems, 36(2), 393- 406.
[12] Heredia, G., Ollero, A., Bejar, M., and Mahtani, R. (2008), “Sensor and actuator fault detection in small autonomous helicopters”, Mechatronics, 18(2008), 90-99.
[13] Heredia, G. and Ollero, A. (2011), “Detection of sensor faults in small helicopter UVAs using observaer/Kalman filter identification”, Mathematical Problems in Engineering, 2011, ID: 174618.
[14] Kim, S.B., Spencer, B.F., Jr, and Yun, C.B. (2005). “Frequency domain identification of multi-input, multi-output systems considering physical relationships between measured variables,” Journal of Engineering Mechanics, 131(5), 461-472.
[15] Kim, K., Choi, J., Koo, G., and Sohn, H. (2016), “Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator”, Smart Structures and Systems, 17(4), 647-667.
[16] Kobayashi, T. and Simon, D. L. (2005), "Evaluation of an enhanced bank of Kalman filters for in-flight aircraft engine sensor fault diagnostics", Journal of Engineering for Gas Turbines and Power, 127, 497-504.
[17] Lewis, F. Optimal Estimation, John Wiley & Sons, Inc., 1986.
[18] Lynch, J.P., Sundararajan, A., Law, K.H., Kuremidjian, A.S., and Carryer, E. (2004).“Embedding damage detection algorithm in a wireless sensing unit for operational power efficiency,” Smart Mater. Struct., 13(2004), 800-810.
[19] Lim, J.K., Park, C.G. (2014), “Satellite fault detection and isolation scheme with modified adaptive fading EKF”, J. Electr. Eng. Technol., 9(4), 1401-1410.
[20] Liu, G., Mao, Z., Todd, M., and Huang, Z. (2014). "Localization of nonlinear damage using state-space-based predictions under stochastic excitation," Smart Materials and Structures, 23(2), 025036.
[21] Lei, Y., Chen, F., and Zhou, H. (2015), “A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies”, Smart Structures and Systems, 15(1), 57-80.
[22] Lei, Y. Luo, S., and Su, Y. (2016), “Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurement”, Smart Structures and Systems, 18(3), 375-387.
[23] Loh, C.H., Chan, C.K., Chen, S.F., and Huang, S.K. (2016), “Vibration-based damage assessment of steel structure using global and local response measurements”, Earthquake Engineering and Structural Dynamics, 45(5), 699-718.
[24] Merrill, W.C., DeLaat, J.C., and Bruton, W.M. (1998), “Advanced detection isolation, and accommodation of sensor failures – Real-time evaluation”, Journal of Guidance, Control, and Dynamics, 11(6), 517-526.
[25] Masri, S.F., Smyth, A.W., Chassiakos, A.G., Caughey, T.K., and Hunter, N.F. (2000). “Application of neural networks for detection of changes in nonlinear systems,” J. Eng. Mech., 126(7), 666-676.
[26] Mellinger, P., Dö hler, M. and Mevel, L. (2016). “Variance estimation of modal parameters from output-only and input/output subspace-based system identification,” Journal of Sound and Vibration, 379(2016), 1–27.
[27] Pandey, A.K. and Biswas, M. (1994). “Damage detection in structures using changes in flexibility,” Journal of Sound and Vibration, 169(1), 3-17.
[28] Peeters, B. and Roeck, G.D. (1999). “Reference-based stochastic subspace identification for output-only modal analysis,” Mechanical Systems and Signal Processing, 13(6), 855-878.
[29] Palanisamy, R.P., Cho, S., Kim, H., and Sim, S.H. (2015), “Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input”, Smart Structures and Systems, 15(2), 489-503.
[30] Pbrianti D., Mustafa, M., Abdullah, N.R.H. and Bayuaji, L. (2016), “Bank of Klaman filters for fault detection in quadrotor MAV”, Asian Research Publishing Network, 11(10).
[31] Qin, S.J. and Li, W. (1999), “Detection, identification, and reconstruction faulty sensors with maximized snsitivity”, AICHE journal, 45(9).
[32] Rytter, A. (1993). “Vibration based inspection of civil engineering structures,” Ph. D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark.
[33] Rice, J.A. and Spencer, B.F., Jr. (2009), “Flexible smart sensor framework for autonomous full-scale structural health monitoring”, NSEL Report No. NSEL-018, University of Illinois at Urbana-Champaign, Champaign, IL, August.
[34] Saravanakumar, R., Monimozhi, M., Kothari, D.P. and Tejenosh, M. (2014), “Simulation of sensor fault diagnosis for wind turbine generators DFIG and PMSM using Kalman filter”, Energy Procedia, 54(2014), 494-505.
[35] Verhaegen, M. (1994). “Identification of the deterministic part of MIMO state space models given in innovations form from input-output data,” Automatica, 30(1), 61-74.
[36] Wang, H., Li, L., Song, G., Dabney, J.B., and Harman, T.L. (2015), “A new approach to deal with sensor errors in structural controls with MR damper”, Smart Structures and Systems, 16(2), 329-345.
[37] Yan, Y.J., Cheng, L., Wu, Z.Y., and Yam, L.H. (2007). "Development in vibration-based structural damage detection technique," Mechanical Systems and Signal Processing, 21(5), 2198-2211.
[38] Yang, J.N., Xia, Y., and Loh, C.H. (2014). “Damage detection of hysteretic structures with pinching effect,” J. Eng. Mech., 140(3), 462-472.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊