跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邢立學
研究生(外文):Li-Xue Xing
論文名稱:載重空間的塑性及安定極限面探討
論文名稱(外文):A Study of Plastic and Shakedown Limit Surfaces in Load Space
指導教授:洪宏基洪宏基引用關係
指導教授(外文):Hong-Ki Hong
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:156
中文關鍵詞:安定分析極限分析構架桁架彈塑性
外文關鍵詞:shakedown analysislimit analysisframetrusselasto-plastic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土木結構分析設計工作,發展能夠與極限設計匹配的方法——極限分析——是相當重要的課題。塑性的重要特徵就是「路徑對路徑」,位移與載重的關係是「路徑相關的」。一般來説,材料未降伏前存在著一個「初始降伏面」,隨著力量加載,材料切換至塑性的階段,隨著載重的路徑不同,會演化其對應的「接續降伏面」,接續降伏面是無窮多的,即不唯一,且與路徑相關。在安全載重與靜態崩塌之間,可以在載重空間建立唯一的「塑性極限面」,也就是說不必進行較冗長的塑性歷時歷程分析。

如果載重具有循環、重覆性,則在塑性變形下,可能有惡性的增量崩塌或交替降伏(塑性疲勞)的現象,也可能在適當的殘留應力分佈下,產生良性的安定現象。在安全循環載重與增量崩塌或交替降伏之間,可以在載重空間建立唯一的「安定極限面」,不必進行較冗長的塑性循環歷時分析。

本文主要在探討載重空間塑性極限面與安定極限面的計算方法,具有線彈性完全塑性組成模式,建構向量線性不等式,接著延伸線性代數的計算方法,使其適用於不等式計算,跳過接續降伏面,便可直接算出崩塌模態,進而得到塑性崩塌、增量崩塌與交替降伏,節省多餘的非矩陣的計算,以期未來能夠加入大型塑性程式分析。而此計算方法不論是桁架、梁或者是剛架,皆可套用此計算程序,為一個可靠的方法。
In design of civil structures, most regulatory codes have adopted limit design specifications; hence, the development of analysis methods --- limit analysis --- to match the limit design is a very important issue. A significant feature of plasticity is ``path to path", and the relationship between displacement and load is ``path-related". In general, there is an ``initial yield surface" before the material is first yielded. With the loading of the force, the material is switched to the plastic stage. With the different load paths, it will evolve into different sequences of subsequent yield surfaces; that is, the evolution of the yield surface is not unique and depends upon the paths. However, there exists a unique ``plastic limit surface" in the load space which demarcates the safe loads and the static collapses; that is to say, it is not necessary to carry out a complicated plastic time history analysis.

If the load is cyclically repeated, then plastic deformation either may result in vicious incremental collapse or alternating yield (plastic fatigue) phenomena, or may result in such appropriate residual stress distributions as shakedown phenomena occur. Between the safe cyclic loads and the incremental collapse or alternating yield, it is possible to establish a unique "shakedown limit surface" in the load space without the need for a complicated cyclic plastic time history analysis.

In this thesis, we discuss the calculation method of the plastic limit surface and the shakedown limit surface in the load space. By using the linearly elastic-perfectly plastic model, we construct the vector inequality and then extend the linear algebra calculation method to the inequality calculation. By skipping the calculation of the subsequent yield surfaces, we can directly calculate the collapse modes, and then obtain the plastic limit surface (static collapse) and the shakedown limit surface (incremental collapse and alternating yield). The developed calculation method, applicable to trusses, beams and rigid plane frames, is verified by examples taken from the existing literature.
摘要 (p.iii)
Abstract (p.v)
誌謝 (p.vii)
目錄 (p.ix)
使用符號與定義 (p.xix)
1 緒論 (p.1)
1.1 問題緣起 (p.1)
1.2 文獻回顧 (p.1)
1.3 極限理論 (p.2)
1.4 基本概念 (p.3)
1.5 本文架構 (p.5)
2 數學模型及推導 (p.7)
2.1 推導塑性極限面 (p.7)
2.1.1 殘餘應力 (p.9)
2.1.2 引理 Lemma (p.9)
2.1.3 使用全局化陣的目的 (p.10)
2.2 安定極限分析 (p.11)
2.2.1 增量崩塌 (p.11)
2.2.2 交替降伏 (p.15)
2.2.3 純彈性内力轉換陣的定義 (p.17)
2.2.4 增量崩塌面的處理方式 (p.17)
2.3 計算步驟 (p.20)
2.4 小結 (p.21)
3 桁架例題 (p.23)
3.1 桁架例題一 (p.23)
3.1.1 機動 力平衡 組成律 (p.24)
3.1.2 機動、力平衡與組成律的組合 (p.24)
3.1.3 極限面 (p.26)
3.2 桁架例題二 (p.29)
3.3 桁架例題三 (p.31)
3.3.1 塑性極限面——不對稱拉壓桿 (p.31)
3.3.2 塑性極限面——對稱拉壓桿 (p.34)
3.4 小結 (p.36)
4 構架例題 (p.37)
4.1 構架例題一 (p.37)
4.1.1 機動 (p.39)
4.1.2 力平衡 (p.40)
4.1.3 組成律 (p.41)
4.1.4 全局彈性勁度陣 (p.42)
4.1.5 塑性極限面一 (p.45)
4.2 構架例題二 (p.53)
4.2.1 塑性極限面二 (p.57)
4.2.2 安定極限面二之一 (p.61)
4.2.3 安定極限面二之二 (p.64)
4.3 構架例題三 (p.67)
4.3.1 機動 (p.69)
4.3.2 力平衡 (p.70)
4.3.3 全局彈性勁度陣 (p.71)
4.3.4 塑性極限面三之一 (p.73)
4.3.5 塑性極限面三之二 (p.80)
4.3.6 安定極限面三 (p.83)
4.4 構架例題四 (p.87)
4.4.1 機動 (p.90)
4.4.2 力平衡 (p.91)
4.4.3 組成律 (p.93)
4.4.4 全局彈性勁度陣 (p.95)
4.4.5 塑性極限面四之一 (p.99)
4.4.6 塑性極限面四之二 (p.110)
4.4.7 安定極限面四 (p.115)
4.5 構架例題五 (p.122)
4.5.1 塑性極限面五 (p.123)
4.5.2 機構 (p.138)
4.6 構架例題六 (p.139)
4.6.1 塑性極限面六 (p.139)
4.6.2 安定極限面六 (p.145)
4.7 構架例題七——不對稱塑性彎矩强度 (p.150)
4.8 小結 (p.152)
5 結論 (p.153)
參考文獻 (p.155)
[1] L. Baker and J. Heyman, Plastic Design of Frames 1: Fundamentals. Cambridge, England: Cambridge Univesrity Press, 1969.

[2] M. Z. Cohn, G. Maier, and D. Grierson, Engineering Plasticity by Mathematical Programming: Proceedings of the NATO Advanced Study Institute. New York: Pergamon Press, 1979.

[3] G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed. Baltimore: The Johns Hop- kins University Press, 2013.

[4] A. Haque, “Plastic analysis and design by linear programming using matlab® and octave,” 2015.

[5] ——, “Proofs of the theorems of plastic analysis and design,” 2015.

[6] J. Heyman, Plastic Design of Portal Frames. Cambridge, England: Cambridge Univesrity Press, 1957.

[7] ——, Plastic Design of Frames 2: Applications. Cambridge, England: Cambridge Univesrity Press, 1971.

[8] P. G. Hodge, Plastic Analysis of Structures. New York: McGraw-Hill, 1959.

[9] M. R. Horne, Plastic Theory of Structures, 2nd ed. Oxford, England: Pergamon Press, 1979.

[10]M. Jirásek and Z. P. Bažant, Inelastic Analysis of Structures. West Sussex, England: Wiley, 2002.

[11]J. A. Kamenjarzh, Limit analysis of solids and structures. Boca Raton, Florida: CRC press, 1996.

[12]S.-Y. Leu and J.-S. Li, “Shakedown analysis of framed structures: Strong duality and primal-dual analysis,” Procedia Engineering, vol. 79, pp. 204–211, 2014.

[13]——, “Shakedown analysis of truss structures with nonlinear kinematic hardening,” International Journal of Mechanical Sciences, vol. 103, pp. 172–180, 2015.

[14]D. Lloyd-Smith, Mathematical Programming Methods in Structural Plasticity. Wien: Springer- Verlag, 1990.

[15]G. Maier and D. Lloyd-Smith, “Update to mathematical programming applications to engineering plastic analysis,” Applied Mechanics Update, pp. 377–383, 1986.

[16]G. Maier and J. Munro, “Mathematical programming methods in engineering plasticity,” ASME, vol. 35, no. 12, pp. 1631–1643, 1982.

[17] B. Milošević, M. Mijalković, Ž. Petrović, and M. Hadžimujović, “Comparative analysis of limit bearing capacity of a continuous beam applying the limit and shakedown analysis depending on the character of the load.,” Tehnicki Vjesnik/Technical Gazette, vol. 18, no. 4, 2011.

[18]B. Milošević, M. Mijalković, Ž. Petrović, M. Hadžimujović, and B. Mladenović, “Comparative analysis of limit bearing capacity of frames depending on the character of the load,” Tehnicki Vjesnik/Technical Gazette, vol. 20, no. 6, pp. 1001–1009, 2013.

[19]A. M. Nafday, R. B. Corotis, and J. L. Cohon, “Multiparametric limit analysis of frames part i -model,” Journal of Engineering Mechanics, vol. 114, no. 3, pp. 377–386, 1988.

[20]——, “Multiparametric limit analysis of frames part ii -computations,” Journal of Engineering Mechanics, vol. 114, no. 3, pp. 387–403, 1988.

[21] Ž. Petrović, B. Milošević, M. Hadžimujović, and M. Mijalković, “Determination of limit bearing capacity of statically indeterminate truss girders,” TEM Journal, vol. 1, no. 1, pp. 45– 50, 2012.

[22]M. Staat and M. Heitzer, “Lisa-a european project for fem-based limit and shakedown analysis,” Nuclear Engineering and Design, vol. 206, no. 2, pp. 151–166, 2001.

[23]C. F. Van Loan, Introduction to scientific computing: a matrix-vector approach using MATLAB. Upper Saddle River, New Jersey: Prentice Hall, 1999.

[24]余同希, 塑性力学. 北京: 高等教育出版社, 1989.

[25]吳昱霆, 硬軟化桁架崩塌面分析. 臺灣大學, 2012, pp. 1–81.

[26]林冠宇, 軟化桁架結構組成律、崩塌面與安全載重空間之探討. 臺灣大學, 2014, pp. 1–96.

[27]林聰悟, 林佳慧, 數值方法與程式. 臺北: 陳紫芬, 1997.

[28]蔡忠穎, 塑性崩塌面計算方法. 臺灣大學, 2016, pp. 1–123.

[29]郭建呈, 彈塑性結構載重空間崩塌面探討. 臺灣大學, 2010, pp. 1–69.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top